
Digital Music to Sheet Music
Hugh Smith

Computer Systems Lab 2009-2010
 Abstract 

Electronic creation of music has become a wide-spread 
hobby or profession. Electronically generated music is 
when a user inputs data about a sound into a computer, 
and it produces said sound. Even though this is very 
widespread, the opposite is not true. That is, the 
conversion of raw sound data into sheet music, or 
something that defines the sound, is much less prevalent. 
Why is this? It is, of course, very challenging to do. This 
project aims to do just that - convert a piece of digital 
music (a .WAV file) into actual sheet music, using the 
Fourier transform algorithm. 

ABC Code → Sheet Music

Offset Size Description Value

0 4 Chunk ID RIFF

4 4 Chunk data 
size

8

8 4 RIFF type WAVE

Offset Size Description Value

12 4 Chunk ID “fmt”

16 4 Chunk Data 
Size

16 + *

20 2 Compression 
code

Int

22 2 Number of 
channels

Int

24 4 Sample rate Hex

28 2 Block align Hex

32 2 Significant 
bits per 
sample

Int

34 2 Extra format 
bytes

Int

Offset Length Description Value

36 4 Chunk ID “data”

40 4 Chunk size Depends 
on file

44 * * *

.WAV Files 

=
 

Middle C

Conclusion

To go from these sound waves into actual notes, a 
piece of rather complicated math is required - the 
Fourier transform. The Fourier transform, in sound, 
takes a function in the time domain, and changes it 
into a function in the frequency domain.

This project successfully implemented the Fourier Transform to identify single notes. This 
procedure also works well for pure staccato music, in which notes do not overlap in time. 
For multiple notes, the Fourier Transform process will identify the various notes, but does 
not indicate which order the notes come in. To determine that, the .WAV file data must be 
used to find out when in time a new note begins. The Fourier Transform process would 
then be applied sequentially, each time using that portion of the .WAV file between where 
the current note starts and the next note starts. These start times are easy to determine for 
staccato music. But when notes overlap, it becomes more difficult. A possible procedure to 
do this was identified. A lot more could be done to extend this project. In the current 
version, it uses the Discrete Fourier Transform, which certainly gets the job done. 
However, it would be faster (and probably easier in the long run) to instead implement the 
Fast Fourier Transform, another algorithm that uses less samples and finds an answer 
more quickly. Another thing that needs to be implemented was the actual conversion to 
ABC format. The current program simply prints out the note it has decided on, and also 
three text files detailing the frequency, magnitude, and phase of each sample. Future 
implementations of this project could also figure out the relative lengths of each note, and 
use those to find the time signature and which length of note each is - quarter note, half 
note, sixteenth note, etc.


	Slide 1

