COMPUTER SYSTEMS RESEARCH
Code Writeup of your program, example report form 2009-2010

1. Your name: Sam Zhang, Period: 5

2. Date of this version of your program: 6/9/10

3. Project title: Natural Language Generation with Markov Chains and Grammar

4. Describe how your program runs as of this version. Include

-- files that may be needed

-- algorithms, specific procedures or methods you wrote

-- kinds of input your program uses

-- screenshots, what kinds of output does your program have

-- does your program handle errors, or does it crash on errors of input?

-- tests: summarize the basic analysis and testing of this version of your program

My project code is split into two parts: the stochastic matrix creation from the text, and the generation of text from the stochastic matrix.

I use a defaultdict to hold the stochastic matrix. It is better than a normal dictionary in this case because blank entries will not cause errors.

 def __init__(self):

 self._data = defaultdict(list)

 def train(self, text):

 words = [None, None]

 for i in xrange(0,len(text)-1):

 words[0], words[1] = words[1], text[i] + " " + text[i+1]

 if words[0]:

 self._data[words[0]].append(str(words[1]))

The above snippet is the core of training the stochastic matrix. Each word in the text is put in the dictionary as a key, and each following word is put as the key's value. That created a messy text though, so I changed it to link every two words together. That is why it stores words[0] and words[1] in the same line.

This quarter, I had to amend the text generation code as well to reflect this storage of two words at once. Here is the essence of the text generation from the stochastic matrix:

def generate(self, length):

 output = []

 output.append(choice(self._data.keys()).title())

 while len(output) < length:

 if self._data.has_key(output[-1]):

 output.append(choice(self._data[output[-1]]))

 else:

 output.append(choice(self._data.keys()))

 text = ""

 for x in output:

 word = x.split(" ")

 text = text +" " + word[0]

 return text

This takes the word pair and selects a random word pair that follows. Since each word pair was given a key in the stochastic matrix, the probability works itself out. That is, the more a pair of words followed a different pair of words, the more entries they have in the matrix, and so the more likely the generation portion of the code is to select it.

Here is a sample output of it applied to Bush's 2001 inauguration:

Ideals in service to one another. Never tiring, never yielding, never yielding, never finishing, we renew that purpose today, to make our country should make no mistake: America remains engaged in the whirlwind and directs this storm.

Here is a sample output applied to a large corpus of movie reviews of all sorts of genres on the internet:

Student meaty script to his home. unfortunately, by telling the same crime again, so i would avoid baby geniuses (the guy ends up forcing charlie and peter seaman made in 1978 would experience fame and fortune, a rich exploration of...

Notice how the syntax and diction follows that of the source text. On the internet, the first letter of the sentence and the personal pronoun “I” are often not capitalized for convenience, and this generated text reflects this.

