COMPUTER SYSTEMS RESEARCH

2nd Quarter Version
Code Writeup of your program, 2009-2010

1. Your name: Peter Ballen Period:5

2. Date of this version of your program: 10/28/09

3. Project title: Exploring the Use of Fuzzy Constraint Satisfaction Problems to Evaluate the Happiness of Society.

Population = [] //Population is an array of Voters;

Priority = [] //Priority of each Voter in Population. The size of Population must equal the size of Priority or the code will throw an error. Population and Priority should align up, the Voter in index 3 of Population should have a priority stored in the Priority array index 3.

canvas = None //Rather than pass the Canvas around, I made it global.

class Voter:

def __init__(self, myOp): //Initializing the Voter required giving it an array of two values, the first corresponding to the issue that will populate the x-axis, the second the y=axis. If myOp is given None, an array will be populated with random floats between 0 and 1. myOp is then saved as myOpnions,

def rate_full(self, proposed): //Proposed is an array of two floats, similar to myOp. Finds a float based on 1 - (distance between myOpinions and proposed). Returns that float.

def rate_partial(self, proposed, index) //Similar to rate_full, but looks only at the given index and completely ignores all other indexes in proposed.

def drawpoint(self, canvas, priority): //Draws the Voter onto the canvas as a black dot at a location determined by myOpinions. The size of the dot is contingent on the passed priority, a larger priority will result in a larger dot.

def fixPriorities() //For the rest of the code to function properly, the list of Priorities must sum to one. However, it is manually easier to enter whole integers. This method will scale the priorities accordingly so that the priorities will sum to one.

def societyrate_full(proposed): //Finds and returns average satisfaction of all Voters in Population. Should be used to evaluate a final proposal or when using brute force.

def societyrate_partial(proposed, index) //Finds and returns average satisfaction of all Voters in Population looking only at the passed index and ignoring the rest. Useful while pruning.

def drawpointoncanvas(canvas, color, i1, i2): //Converts the point (i1, i2) with range [0,1] to an (x,y) value with range [0, 500] and draws that point on canvas with the given color. Uses TKinter. Currently only being used to draw final results, as the individual voters are drawn with the drawpoint method.

def brutesimulation()

//The only first quarter version, which uses brute force to find the optimal solution. I no longer use it very much, but it's kept for archiving purposes.

def prunesimulation()
//This is the current faster method that uses pruning. The following occurs:

//Initializes blank canvas, width = height = 500 pixels.

//Population is created. Can either be given set values of created randomly. Can also control the spacing of society by controlling the range of the random values by giving values of [.5+(random()-.5)*dSpacing,.5+(random()-.5)*dSpacing], where dSpacing ranges from 0 (all centered at .5) to 1 (randomly spread across 0 to 1).

//Priority list is created, either given set values or created randomly.

//The fixPriorities method is called to ensure that the priorities sum to one.

//The code starts by looking at the x-values. Using the societyrate_partial method, the optimal x-value is found, ignoring the entirety of the y-values.

//The optimal x-value is kept, the rest are pruned away.

//Looks at the remaining x-y-values (at this point, only the points with the optimal x-values are left). Using the societyrate_partial method, the total optimal solution is found.

//Because of pruning, the background of the board is no longer colored, in fact most of it is simply ignored. A gray background is drawn on the canvas.

//The Voters are then drawn on the board, using the drawpoint method defined in the Voter class. Voters are passed their priority and the canvas, and they draw themselves on the board. Voters with larger priorities are drawn as larger circles.

//Finally, draw the optimal location (the place where society's satisfaction is highest) in blue using the drawpointoncanvas method. .

//Time how long it takes all of this to happen. For Population size < 1M, should take less than one minute.

//Call root,mainloop() to display the board on the screen. And call it a day.

4. What do you expect to work on next quarter, in relation to the goal of your project for the year?

I feel like the basic framework of the project is in place. Now, to do something with it. I want to find some Voter data and load it in. Something like Afghanistan poll results: stay the course vs. get out, happy vs. bitter, ect. Another possible source of data might be election results, compress each state as an individual "Voter" with priority proportional to the amount of electoral college votes it gets. The sky is the limit.

from random import *

from math import *

from Tkinter import *

from time import *

NumCategories = 2

NumVoters = 11

Population = []

Priorities = []

canvas = None

accuracy = .01

class Voter:

 def __init__(self, myOp):

 if myOp != None:

 self.myOpinions = myOp

 else:

 rawop = []

 for k in range(0, NumCategories):

 r = random()

 rawop.append(r)

 self.myOpinions = rawop

 def rate_partial(self, proposed, index):

 total = 0

 op = self.myOpinions[index]

 prop = proposed[index]

 total = pow(op-prop, 2)

 #total = sqrt(total)

 total = 1 - total

 return total

 def rate_full(self, proposed):

 total = 0

 for k in range(0, NumCategories):

 op = self.myOpinions[k]

 prop = proposed[k]

 total += pow(op-prop, 2)

 total = total / NumCategories

 total = 1 - total

 return total

 def drawpoint(self, canvas, p):

 #drawpointoncanvas(canvas, 'black', self.myOpinions[0], self.myOpinions[1])

 x = 100 + self.myOpinions[0] * 300

 y = 400 - self.myOpinions[1] * 300

 if x < 103:

 x = 105

 if x > 497:

 x = 495

 if y < 103:

 y = 105

 if y > 497:

 y = 495

 r = sqrt(50*p/3.141592857)

 canvas.create_oval(x-r,y-r,x+r,y+r,fill='black')

def fixPriorities():

 global Priorities

 total = 0.0

 for k in Priorities:

 total += k

 index = 0

 for k in Priorities:

 Priorities[index] = Priorities[index] / total

 index += 1

def societyrate_partial(proposed, index):

rating = 0.0

for k in range(0, NumVoters):

 rating += Population[k].rate_partial(proposed, index) * Priorities[k]

 rating = sqrt(rating)

rating = rating / NumVoters

if rating > 1:

 rating = 1

if rating < 0:

 rating = 0

return rating

def societyrate_full(proposed):

rating = 0.0

for k in range(0, NumVoters):

 rating += Population[k].rate_full(proposed) * Priorities[k]

rating = rating / NumVoters

if rating > 1:

 rating = 1

if rating < 0:

 rating = 0

return rating

def drawpointoncanvas(canvas, color, i1, i2):

 x = 100 + i1 * 300

 y = 400 - i2 * 300

 if x < 103:

 x = 105

 if x > 497:

 x = 495

 if y < 103:

 y = 105

 if y > 497:

 y = 495

 canvas.create_oval(x-2,y-2,x+2,y+2,fill=color,outline=color)

 return x,y

def prunesimulation():

 starttime = time()

 maxrate = 0

 maxvalues = [0,0]

 i1 = 0.0

 while i1 < 1:

 rating = societyrate_partial([i1, .5], 0)

 if rating > maxrate:

 maxrate = rating

 maxvalues[0] = i1

 i1 += accuracy

 i1 = maxvalues[0]

 maxrate = 0

 i2 = 0.0

 while i2 < 1:

 rating = societyrate_full([i1, i2])

 if rating > maxrate:

 maxrate = rating

 maxvalues[1] = i2

 i2 += accuracy

 canvas.create_rectangle(100, 100, 400, 400,fill='grey', outline='grey')

 for k in range(0, NumVoters):

 Population[k].drawpoint(canvas, Priorities[k])

 drawpointoncanvas(canvas,'white',maxvalues[0],maxvalues[1])

 print maxvalues, maxrate

def brutesimulation():

 starttime = time()

 #dSpacing 0 = perfectly aligned, 1 = perfectly random

 maxrate = 0

 maxvalues = []

 i1 = 0.0

 while i1 < 1:

 i2 = 0.0

 while i2 < 1:

 rating = societyrate_full([i1,i2])

 if rating > maxrate:

 maxrate = rating

 maxvalues = [i1,i2]

 x = 100 + i1 * 300

 y = 400 - (i2 * 300)

 i2 += accuracy

 i1 += accuracy

 for k in range(0, NumVoters):

 Population[k].drawpoint(canvas, Priorities[k])

 canvas.create_rectangle(100, 100, 400, 400,fill='grey', outline='grey')

 drawpointoncanvas(canvas,'white',maxvalues[0],maxvalues[1])

 print maxvalues, maxrate

def main():

 global Priorities, Population, canvas

 root = Tk()

 canvas=Canvas(root,width=500,height=500,bg='white')

 canvas.pack()

 for k in range(0, NumVoters):

 Population.append(Voter(None))

 #Priorities.append(randint(1,10))

 Priorities.append(80)

 for k in range(0, 10):

 Priorities.append(2)

 fixPriorities()

 #print Priorities

 prunesimulation()

 root.mainloop()

if __name__ == '__main__':

main()

