
Design of a 3D Graphics Engine
TJHSST Senior Research Project Proposal

Computer Systems Lab 2009-2010

Joseph Hallahan, period 5

January 25, 2010

Abstract

One important idea important to many
modern programming problems is separating
source code into multiple parts. Although
it makes the program more complex, code
from one part of the program can be able
to be used for other programs as well. The
only difficulty there lies in keeping track of
the structure. In Java, different classes can
extend each other and implement interfaces.
In C++, classes can still extend others and
header files, which are basically just a list
of declarations that can be used in any pro-
gram, can be included. This sort of organi-
zation seems to be a good way of creating a
graphics engine, since any complicated ren-
dering methods can be placed into separate
files and can therefore be used in any number
of programs. This project involves creating a
graphics engine in this fashion that, in addi-
tion to rendering, can also implement differ-
ent forms of collision detection and keep track
of input. C++ and OpenGL will be used to

create this engine.

keywords: graphics engine, OpenGL,
C++

1 Introduction

1.1 Situation/Statement of
Problem

Engines are parts of programs that provide
functionality for certain processes. Some
engines focus on the computations needed
for calculating realistic physics simulations,
while others facilitate the rendering of graph-
ics. One feature common to both physics
and graphics engines is the fact that both
are typically not limited to one program; of-
ten, engines are used for several applications.
Programmers can have the choice whether to
create a program entirely from scratch or to
build it off of an existing engine.

1



1.2 Purpose

The goal of this project is to create an en-
gine that focuses predominantly on graphics.
It will be able to be used for many appli-
cations, such as for simulations, games, and
other 2D and 3D applications. It will need
to have the ability to do the math related to
these processes, as well as the implementa-
tion of various collision detection techniques.
The engine will also have some ability to ren-
der text and to get input from the mouse and
keyboard.

2 Background

Graphics engines are very important to the
work done by many programmers today. In
the process of creating an application, after
the initial design phases are complete, the
first thing the programming team will typ-
ically do is begin work on the application’s
engine. Some applications, if they are new
and different from what has been done be-
fore, will need an entirely new engine and, as
a result, will require a lot more work. How-
ever, if it is similar to one that has already
been completed and released, it is much eas-
ier to use an existing engine than to create
a new one. In addition to reqiring less work,
completed engines have already been tested
for stability and compatibility, so programs
that use them typically do not need as much
post-production work.

Because graphics code can become rather
complex and not user-friendly, it would make
an excellent candidate for use in an engine.

Figure 1: This is the ultimate goal of the
project: to create Pong without using graph-
ics code.

Encapsulating all the code needed for render-
ing graphics would take a large burden off of
programmers who will then be able to spend
more time on the less rigid parts of projects.
The basic code for graphics does not change
very much from application to application,
so putting it in a separate file for other pro-
grams’ use would be a good idea.

3 Development

3.1 Structure in C++

Last quarter, I explored the use of the
OpenGL library in conjunction with a C++
source file. I created a program which could
create images and then draw them. One of
these examples featured user input. This

2



quarter, I improved upon this by creating
my own header file and including that into
a Pong program. The purpose of this header
file was for the program including it to be able
to use the OpenGL methods (from the header
file) without needing any explicit OpenGL
code. I wrote methods that could draw sim-
ple shapes, such as circles and rectangles, as
well as text. Technically, this code was not
in the header (.h) file, but with a separate
source (.cpp) file with the same name. The
header provided the declarations for these
methods, and those were what the Pong pro-
gram needed to compile and run correctly. It
was able to link with the implementations in
the separate source file and use them.

3.2 Collisions

Collisions are an important area in both
games and simulations, and as a result they
are a necessity in nearly every sort of en-
gine, even one otherwise exclusively used for
rendering. As the engine in this project al-
ready supports more features than the av-
erage graphics engine, it makes sense that
collision detection be added as well. Right
now, only one form of collision detection is
present in the program. This type, in which
objects are checked for collision on a frame-
by-frame basis, is called discrete collision de-
tection. This type is useful in simple appli-
cations since it is fast and easy to code. All
that is necessary for discrete collision detec-
tion is the comparison of the pixels covered
by each shape, to see if any of them overlap.
There are a number of modifications that I
could make to the engine involving collision

detection in the future. Continuous collision
detection is a process which checks to see if
two shapes have moved through each other,
an issue that can occur in discrete collision
detection if care is not taken. This would
be a simple feature to add. Other collision
detection techniques, such as those used for
concave polygons, would be useful as well in
order to add as much functionality as possible
to the engine. However, the discrete collision
detection I have now is more than sufficient
for the simple game of Pong used to show the
results of the current engine. Whichever col-
lision technique is needed will depend on the
scope of the project at hand.

4 Tests and Analysis

After I finished my header file, my next step
was to get it to be compatible with a simple
game of Pong I had coded a little while ear-
lier. Pong programs are not new to me; I have
created them with Java and C++ before, and
hopefully the header file’s OpenGL methods
would make this program work as well. Un-
fortunately, I had numerous problems getting
them to work together. Sometimes one piece
of code wouldn’t be able to see any of the
methods from another part, and sometimes
simple syntax errors slowed progress down.
In the end, I resorted to another IDE called
Code::Blocks, and that the problem of linking
different source files together. After fixing a
few more errors, the code was able to compile
and run, and a little debugging resulted in a
functioning game of Pong.

3



5 Results

I was able to successfully implement the
methods of my OpenGL engine into a basic
game of Pong. The user can input a direction
using the keyboard and move a white rect-
angle up and down. When the white circle
hits the rectangle, the engine identifies it as
a collision and reverses the circle’s horizontal
velocity. The engine also displays the scores
at the top of the screen. This program was
a good test of my engine, since it used every
method I have coded so far, and the actual
source of the game (Pong.cpp) includes lit-
tle to no actual OpenGL code at all - it was
successfully encapsulated within the engine.

6 Conclusion

This program, when linked to the header
file containing the OpenGL methods, cor-
rectly used them despite not using any ex-
plicit OpenGL code within its own source.
Relating to my original goals for this project,
it was a success. However, it needs to be
able to do significantly more work in order to
be truly considered an engine. This current
project can, at best, be considered only a li-
brary, which declares and implements compli-
cated methods once so they do not have to be
rewritten for every program that uses them.
While I was working on this, I was more wor-
ried about encapsulating the OpenGL code
since it is so complicated, but now that it
works correctly I can start to be less specific
about what the engine needs to do. In other
words, OpenGL programs share significantly

more code than just the graphics code. Any
program has certain parts, such as the initial-
izion of variables, the code needed to end it,
and, most importantly, a loop which contin-
uously does calculations and then draws ob-
jects on the screen. This is much more work
than a simple header file would be able to
accomplish, so my next step on this project
will be to create a dedicated engine class that
will have so much built-in functionality that
it will be able to run itself with no added work
from a programmer.

7 Bibliography

• Development of a 3D Graphics Engine
(Kassing)

• Modular Architecture for Computer
Game Design (McNeill)

• Multi-threaded Game Engine (Tulip,
Bekkema, Nesbitt)

• Interactive 3D Geometry in OpenGL
(Welsh)

• FROG: The Fast & Realistic OPENGL
Displayer

• Some code used from
”http://www.tjhsst.edu/ dhy-
att/superap/opengl.html”

4


