
Design of a 3D Graphics Engine for 
use in Various Applications

Joseph Hallahan
Computer Systems Lab 2009-2010

 Abstract 
One important idea important to many modern programming 
problems is separating source code into multiple parts. Although it 
makes the program more complex, code from one part of the 
program can be able to be used for other programs as well. In C++, 
classes can extend others and header files, which are basically just 
a list of declarations that can be used in any program, can be 
included. This sort of organization seems to be a good way of 
creating a graphics engine, since any complicated rendering 
methods can be placed into separate files and can therefore be 
used in any number of programs. This project involves creating a 
graphics engine in this fashion that, in addition to rendering, can 
also implement different forms of collision detection and keep track 
of input. C++ and OpenGL will be used to create this engine.

Fig 1: The plan...
Background and Introduction

Graphics engines are very important to the work done by many programmers today. 
In the process of creating an application, after the initial design phases are complete, 
the first thing the programming team will typically do is begin work on the 
application's engine. Some applications, if they are new and different from what has 
been done before, will need an entirely new engine and, as a result, will require a lot 
more work. However, if it is similar to one that has already been completed and 
released, it is much easier to use an existing engine than to create a new one. In 
addition to reqiring less work, completed engines have already been tested for 
stability and compatibility, so programs that use them typically do not need as much 
post-production work. The goal of this project is to create an engine that focuses 
predominantly on graphics. It will be able to be used for many applications, such as 
for simulations, games, and other 2D and 3D applications. It will need to have the 
ability to do the math related to these processes, as well as the implementation of 
various collision detection techniques. The engine will also have some ability to 
render text and to get input from the mouse and keyboard.

Discussion 
Unfortunately, while the program ran 
without issues, I neglected to provide 
the code needed to create a window in 
which to draw the game. I realized this 
too late and when I found out, I put 
some of the code from my 1st quarter 
project into my current program, which 
was my purpose for creating that 1st 
quarter project in the first place. 
However, the computer I was using did 
not have the OpenGL source I needed 
to create the window, and when I tried 
it on the school computer, it wouldn't 
link the files together. However, using 
a simple form of text output, I was able 
to ensure that the program still worked 
as it was supposed to. Next quarter I 
will not use the same structure as this 
one so that I will not have these 
OpenGL or linking problems.

Results and Conclusions
This program, when linked to the header file containing the OpenGL 
methods, correctly used them despite not using any explicit OpenGL 
code within its own source. Relating to my original goals for this project, 
it was a success. However, it needs to be able to do significantly more 
work in order to be truly considered an engine. This current project can, 
at best, be considered only a library, which declares and implements 
complicated methods once so they do not have to be rewritten for every 
program that uses them. While I was working on this, I was more 
worried about encapsulating the OpenGL code since it is so 
complicated, but now that it works correctly I can start to be less specific 
about what the engine needs to do. My next step on this project will be 
to create a dedicated engine class that will have so much built-in 
functionality that it will be able to run itself with no added work from a 
programmer.


	Slide 1

