
Functional Programming Language Design and
Implementation

TJHSST Computer Systems Lab 2009-2010

Jason Koenig
Latimer Prd. 5

January 28, 2010

Abstract

Scripting languages have increased greatly in
popularity in recent years with the growing
power of computers. The trade off of runtime
and programmer time is increasing favoring
using more runtime. However, most current
scripting languages are imperative. A lan-
guage is developed which is primarily func-
tional in style. The language has novel fea-
tures which allow the base interpreter to be
small in size, will the lack of features such
as eval allow the programs to be optimized
easily.

1 Introduction

The purpose of my project is to develop a
functional style programming language. This
include both the language definition and a
sample implementation. The language is sim-
ilar to Lisp, but contains features to make it
friendlier to imperative programmers. The
initial version will be interpreted, but I ex-
pect to eventually at least partially compile
code. The first interpreter has been written
in Python, but the final implementation will

be in C for speed. The groundwork has been
laid for the compilation of functions, which
are the slowest and most commonly used fea-
tures of the language. Improving their speed
will make it more useful.

One goal is to make the interpreter as small
as possible, allowing the language to easily be
embedded in other programs. This will al-
low my language to be used both on its own,
and embedded as a scripting language like
Python. Another goal is to create a language
that allows both functional and imperative
styles in the same language. Some of these
features are similar to Lisp and JavaScript,
such as a definite execution order and al-
lowance of local variables. I will also imple-
ment control structures such as while and
foreach.

Beyond the implementation, I will also de-
velop a series of tutorials and example pro-
grams that will assist in learning my new lan-
guage. This will be important if my language
is to become anything other than a toy lan-
guage.

1



2 Background

There have been numerous functional lan-
guages over the years. The heaviest influ-
ences on my language are from Lisp and
Haskell. Lisp has a definite execution order,
and has support for resettable local variables.
Lisp is very complex, however, and the inter-
preter is very large. It also has a complex and
diversified family of languages, which makes
it quite difficult to learn ’Lisp’, rather than
Scheme or Common Lisp or one of it’s deriva-
tives. Further, Lisp has a very large stan-
dard library, which makes it difficult to port
cleanly. My language would be focused on
simplicity and speed, rather than on support-
ing every possible feature. This makes it easy
to port.

Haskell shares more of a syntactic repre-
sentation with my language. It however, is
completely functional, which means no vari-
able assignments. It is also lazy, which means
computation is deferred until the last possible
moment. Thus things like function side ef-
fects are not allowed. In languages like C++,
sometimes expressions are evaluated simply
for their side effect, like accessing a mem-
ory location to bring it into the cache. In
Haskell, this is impossible, as simply access-
ing something is not enough to force its eval-
uation. This in turn forces the programmer
into the functional style, which makes some
operations, like input and output, harder. It
also requires a shift in thought process to un-
derstand. I want to avoid this requirement
as much as possible in my language. By sup-
porting imperative programming, I will ease
more people into the functional style, and
give my language a higher chance of success.

Other similar languages focus on having
a strong mathematical foundation. My lan-
guage is not designed with mathematical el-
egance in mind, but rather with being a con-

crete language that is useful. Lisp uses the
same representation to represent code and
data. While this makes certain kinds of pro-
gramming easier, it is much more difficult to
optimize, because the original representation
must be retained and the optimized version
must be recreated when the code is modified.
My language is designed to be easily com-
pilable without a huge, complex executable.
This not only makes the language itself faster,
but it makes it more responsive when it is
embedded into other programs. In these ap-
plications, the startup time of the interpreter
is as important as the execution speed of the
code.

Further, these languages tend to provide
functions such as eval that allow a string to
be executed as if it were code. While this is
useful in producing ”flexible” code, in prac-
tice its uses are extremely limited and can be
avoided by proper software engineering.

3 Design

In my language, like other functional lan-
guages, a program is executed by evaluating
the main expression. This expression is usu-
ally composed of sub-expressions, which are
then composed of sub-expressions, and so on.

A program in this language is encoded us-
ing ASCII formatted text, which may be in
a file, on a stream, in a buffer in memory,
etc. The program is first divided into to-
kens. Then a tree is created from these to-
kens, which is then executed. The language
is sometimes ambiguous as to which opera-
tor should apply to which expressions. In
these cases, parentheses are required to dis-
ambiguate.

This language uses infix notation for most
expressions. The exception to this rule is the
control structures, which are denoted with a

2



Figure 1: The graph after the parser stage.
Notice that the let expression holds a list
of assignments (in this case only one). The
numbers in parentheses are the node num-
bers, which are like pointers to the node.

special initial token and possibly a series of
internal tokens. Thus the type of a given
subexpression can be determined solely by
it’s first token. Thus the language can be
parsed by a simple recursive descent with
backtracking parser. Operator precedence
follows rules much like those of other C-
derived languages.

My language uses the . (dot) operator to
represent function application. Most simi-
lar languages use whitespace to separate the
arguments. By using a separate character,
function application becomes an infix oper-
ation, which makes the syntax and parser
much simpler. Almost all operations other
than lambda definition, literal list specifica-
tion, and control structures are represented
as infix expressions. This is far more intu-
itive than the prefix notation of Lisp, and
matches expressions in almost all imperative
languages.

The language has support for the let con-
struct, which allows local definitions, as well

as variables in the imperative style. The lan-
guage is lazy, which means functions are not
evaluated until the results are needed. The
current model only accounts for one level of
’need’, but future iterations will likely include
support for ’strong’ and ’weak’ need. Built
in operators and functions such as +, ->,
and reduce would ’strongly’ need their ar-
guments, while user defined functions would
’weakly’ need their arguments. Closures
would only evaluate themselves when they
are strongly needed, but regular expressions
would do so only on weak need. This would
cause expressions such as

let

two = {x,y | do [id y, id x,()] }

in

two.(print."x").(print."y")}

to print ”xy” rather than ”yx”. This is what
most imperative programmers would expect,
as well as those used to Lisp-like semantics. If
the function two had been called on two clo-
sures instead, then the evaluation of the print
statements would have been delayed until the
code had entered the do construct, in which
case the second argument would be evaluated
first. This is sometimes useful, as when the
programmer is trying to implement their own
control structures.

4 Implementation

The interpreter is divided into a number of
relatively independent sections. The first
part is the lexical analyzer, which turns the
sequence of characters into a sequence of to-
kens. It also parses the constants to produce
values, and un-escapes the strings to produce
an in memory representation.

The parser is the next stage. The parser
turns the linear token stream into the first re-

3



vision of the graph that will eventually be ex-
ecuted as the program. The parser has many
lines of code, but as it is a simple recursive de-
scent parser, it is not terribly complex to un-
derstand. In the Python version, techniques
were used to make the code smaller, in an at-
tempt to make it more concise and readable.

The parser hands it’s graph to the opti-
mizer. Despite it’s name, the optimizer has a
larger role than simply to make the code ex-
ecute faster. The optimizer is responsible for
the transformation of the graph from a lexi-
cal one into one which the executor can use.
This involves the removal of variable names,
and the reduction of constructs such as let

from their tree representation into the graph
form. It also performs lambda lifting, to allow
the code to be compiled into a linear instruc-
tion stream. This process takes variables in
the function and turns them into extra hid-
den arguments. This means that they are
not dynamic at all, which allows them to be
compiled ahead of time. This makes it much
easier to compile these functions into instruc-
tions, which could eventually be mapped into
machine code for direct execution on the pro-
cessor. A compiler would produce its output
at this stage, while an interpreter would con-
tinue on.

The executor is the final stage of program
execution. The interpreter is responsible for
walking the graph and performing the in-
structions found there. At this point, the ac-
tual output of the code is produced. This step
can be separated from the rest relatively eas-
ily, which would make it easy to compile a se-
ries of files once, and then run this code many
times without repeating the work of compil-
ing the code.

5 Supplemental Materials

In addition to a reference implementation, a
language definition is being developed. The
language will be rigorously specified, as this
will ensure that programs are easily ported
between systems. In addition, tutorials and
documentation of how to embed the inter-
preter in other programs will be developed.
This will enable the language to be easily
learned, as well as used as an interface into
other systems.

6 Results

The language currently can perform reduc-
tion of complex mathematical expressions, as
well as efficient function calls and recursion.
It has local variables and user defined func-
tions. There is no support yet for impera-
tive style programming. The command line
program allows the language to act in an in-
teractive mode, which will assist learning the
language. It can also take a filename to use
as input, which allows it to execute longer
programs written in files.

7 Future Work

Future work on my language will include
the further development of the core func-
tions. The standard library needs to be de-
veloped, as well as bindings to common li-
braries. Example programs demonstrating
how the language can be embedded in other
languages would provide a convenient refer-
ence for other programmers. The optimizer
can be improved to do things such as constant
propagation, tail recursion optimization, and
code compilation.

4



Works Cited

1. Graham, Paul. Arc Programming
Tutorial. Retrieved from YCombi-
nator website on Jan 14, 2010:
http://ycombinator.com/arc/tut.txt

2. Jones, Simon Peyton. (1987). The
Implementation of Functional Program-
ming Languages. New York, NY: Pren-
tice Hall.

3. Leroy, Xavier. (2002) Compiling func-
tional languages [Powerpoint Slides].
Retrieved from Project Cristal website:
http://cristal.inria.fr/ xleroy/talks/compilation-
agay.pdf

5


