
Implementation of a Functional
Programming Language

Jason Koenig
Computer Systems Lab 2009-2010

Abstract
Scripting languages have increased greatly in

popularity in recent years with the growing power of
computers. The trade off of runtime and programmer
time is increasing favoring using more runtime.
However, most current scripting languages are
imperative. A language is developed which is
primarily functional in style. The language has novel
features which allow the base interpreter to be small
in size, will the lack of features such as eval allow
the programs to be optimized easily and efficiently.

Introduction
The purpose of my project is to develop a

functional style programming language. The language
is similar to OCaml, but contains features to make it
friendlier to imperative programmers. The initial
version will be interpreted, but the final version will
include some code compilation.
 One goal is to make the interpreter as small as
possible, allowing the language to easily be
embedded in other programs. This will allow my
language to be used both on its own, and embedded
as a scripting language like Python.

Beyond the implementation, I will also develop a
series of tutorials and example programs that will
assist in learning my new language. This will be
important if my language is to become anything other
than a toy language.

Figure 1. The graph after the parser stage. Notice that the let
expression holds a list of assignments (in this case only one). The
numbers in parentheses are the node numbers, which are like
pointers to the node.

Sample Program
let

even = {x| if x == 1 then false
else odd.x-1},

odd = {x| if x == 1 then true
else even.x-1}

in
(even.2000)

Implementation
The interpreter is divided into a number of

relatively independent sections. The first part is the
lexical analyzer, which turns the input string into
tokens. The parser turns the linear token stream into
the first revision of the graph. This output is visualized
in Figure 1. The parser hands it's graph to the
optimizer. The optimizer is responsible for the
transformation of the graph from a lexical one into
one which the executor can use. This involves the
removal of variable names, and the reduction of
constructs such as let, as well as the transformation
of dynamic functions into static ones. The executor is
the final stage of program execution. The executor is
responsible for walking the graph and performing the
instructions found there. The output of the program is
produced at this step.

Results
The language currently can perform reduction of

complex mathematical expressions, as well as
efficient function calls and recursion. It has local
variables and user defined functions. There is no
support yet for imperative style programming. The
command line program allows the language to act in
an interactive mode, which will assist learning the
language. It can also take a filename to use as input,
which allows it to execute longer programs written in
files.

Design
In my language, like other functional languages, a

program is executed by evaluating the main
expression. This expression is usually composed of
sub-expressions, which are then composed of sub-
expressions, and so on.

Several novel ideas were incorporated, such as
using an explicit character for function application (.)
rather than whitespace. This simplifies the parser
greatly, which was a design goal.

	Slide 1

