COMPUTER SYSTEMS RESEARCH
Code Write-up 2009-2010

1. Your name: Deniz Oran, Period: 5

2. Date of this version of your program: January 22, 2010

3. Project title: Implementation of Least Significant Bit Steganography and its Steganalysis

4. Describe how your program runs as of this version. Include

There are currently four files required to run the program: The first is the Driver, which uses elements from the other three files. The second is the Display, which defines the information for the GUI that the Driver does not. The Display also contains try-catch statements for some of the perceived errors.

The key algorithm to this program is the least significant bit encoding, but before that can be explained, how the data is set up must be explained:

A text message called input is inputted into the text field of the GUI and is the a variable in the Display class that does a getText() to store the information.

public JTextArea getText(){ return input;}

The Buffered Image class is then used to input the image and JFileChooser to select the image file

private BufferedImage getImage(String f) {
 BufferedImage image = null; File file = new File(f);
 try {image = ImageIO.read(file); }
 catch(Exception ex)
 { JoptionPane.show MessageDialog(null,
 "Image could not be read!","Error",JOptionPane.ERROR_MESSAGE);} return image; }

Now that the image has been registered by the program, the image has to be converted into some workable format. The WriteableRaster class in JAVA enables this:

 private byte[] get_byte_data(BufferedImage image)
 {
 WritableRaster raster = image.getRaster();
 DataBufferByte buffer = (DataBufferByte)raster.getDataBuffer();
 return buffer.getData();
 }
This method then converts the image to binary:

private byte[] bit_conversion(int i)
{
byte byte3 = (byte)((i & 0xFF000000) >>> 24);
byte byte2 = (byte)((i & 0x00FF0000) >>> 16);
byte byte1 = (byte)((i & 0x0000FF00) >>> 8);
byte byte0 = (byte)((i & 0x000000FF));
return(new byte[]{byte3,byte2,byte1,byte0});
}

Finally the encoding is performed:

 private byte[] encode_text(byte[] image, byte[] addition, int offset)
 {
 //check that the data + offset will fit in the image
 if(addition.length + offset > image.length)
 {
 throw new IllegalArgumentException("File not long enough!");
 }
 //loop through each addition byte
 for(int i=0; i<addition.length; ++i)
 {
 //loop through the 8 bits of each byte
 int add = addition[i];
 for(int bit=7; bit>=0; --bit, ++offset) //ensure the new offset value carries on through both loops
 {
 //assign an integer to b, shifted by bit spaces AND 1
 //a single bit of the current byte
 int b = (add >>> bit) & 1;
 //assign the bit by taking: [(previous byte value) AND 0xfe] OR bit to add
 //changes the last bit of the byte in the image to be the bit of addition
 image[offset] = (byte)((image[offset] & 0xFE) | b);
 }
 }
 return image;
 }

The algoritm involves checking that the file is long enough, then shifting the bytes and ensuring that the addition of the bit AND 1 results in the correct number (1 or 0). The offset value is the initial skipping of the first bytes of the binary to avoid suspicion. The altered image binary is then returned. The new image is then saved in the directory:

private boolean setImage(BufferedImage image, File file, String ext)
 { //saves the image as file (defined by user)
 try
 {
 file.delete(); //delete resources used by the File
 ImageIO.write(image,ext,file);
 return true; //if save is succesful
 }
 catch(Exception e)
 {
 JOptionPane.showMessageDialog(null,
 "File could not be saved!","Error",JOptionPane.ERROR_MESSAGE);
 return false; }}

To handle errors, there are four try-catch statements that ensure that the input is valid, that the image has been encoded, that the directory is valid, and that the altered image has been successfully saved. One error that has not been fixed was experienced when saving an new image that has the same name as something else in the directory.

To test the program, the two images were visually compared and appeared to look the same. The binary was then examined and the compromised image had the encoded text after 32 bytes (as written in the program). Finally, the run time of the program was examined to see how long it took to properly render the image using the WritableRaster and Buffered Image class.

5. What do you expect to work on next quarter, in relation to the goal of your project for the year?

Next quarter the decoding function will work properly and I will try to encode an image into an image. Further error testing will be done to streamline the user experience.

