TJHSST Computer Systems Lab Senior
Research Project
Design of a Strategy Game with a Humanlike
Al Opitmized by a Genetic Algorithm.
2009-2010

Bharat Ponnaluri

January 24, 2010

1 Abstract

Currently the Al in many strategy games makes decisions by plugging in data
from the game’s environment into a combination of heuristic evaluation func-
tions and constants. It is difficult to get an effective combination of heuristic
evaluation functions and constants that allow the Al to make intelligent deci-
sions. I plan to design a real-time strategy with an intelligent Al. To do that,
I will have a genetic algorithm create combinations of heuristic evaluation
functions and constants that allow the Al to make intelligent decisions. The
AT will also be made intelligent by replicating human behavior and taking
advantage of it by responding to certain behavioral patterns. For example, if
an Al recognizes that one player has a tendency to retreat troops, the Al will
take advantage of that by attacking that player. My genetic algorithmn will
work by starting off with a population of random combinations of constants
and heuristic evaluation functions, and evolve them into intelligent AI’s using
the principles of natural selection and evolution.

Keywords: Genetic Algorithm, Real-Time strategy, heuristic evaluation
function,pattern recognition

2 Introduction

Currently, heuristics are important to video game Al. Heuristics are good at
approximating optimal solutions with combinations of constants and evalua-

1

tion functions based on the game environment. Herusitics are helpful because
computers have difficulty using brute force calculations to arrive at an opti-
mal solution. For example, in chess, the ability to look forward more than
a few moves is a useful skill. A pure brute force approach does not work,
because the chess games usually take several dozen moves to finish with the
search time increasing exponentially generally by a factor of 16 or more each
time. Looking past a certain number of moves is too time consuming for
a computer to do. Effective chess Al must prune their search tree by us-
ing techniques such as as alpha-beta pruning and then using heuristics to
evaluate a position after a certain search depth.

The same idea applies to other strategy games, since computers do not
have the ability to look ahead too far using a brute force approach. In order
for heuristic evaluation functions to give effective results, the function needs
to have an optimal combination of constants and functions. With more than
several constants and possible combinations of functions, trying to optimize
the combination of functions and constants becomes increasingly difficult.
Genetic algorithms will make it easier to optimize heuristics that involve a
large number of evaluation functions and constants. For example, there are
many factors that need to be considered in chess such as material imbalances,
pawn structure, king safety, space, and initiative. The heuristic then needs
to weight these factors optimally, which is difficult.

Also, my games Al will take advantage of human intelligence to make
interesting and capable opponents. The AI will have the ability to take
advantage of patterns in other players’ behavior. For example, one player
may play defensively and vigorously counterattack an opponent that attacked
it first. The AI will recognize this and wait until that player is exhausted
from a conflict with another opponent before attacking it. If another player
is aggressive, the Al will wait until that player has overextended itself. The
AT’s will conduct diplomacy, so they will consider whether an opponent is
trustworthy or not before making a deal. Since this game involves taking
over cities that each give a fixed income, one player will eventually threaten
to win if not stopped. The Al is designed to recognize this and try to stop the
player. The AI will also recognize if another player has a tendency to stop
the stronger player, and will sit back and take advantage of the situation.

3 Scope of Study

The objective will be to create an Al that is intelligent enough to beat
someone who is a hardcore fan of my game without using cheats or overly
using the fact that it has a faster reaction time than a human. It should

be able to beat a skilled human player by making intelligent decisions and
being able to exploit the behavior of human players to its advantage. At the
same time, I should easily be able to modify the Al so that beginners can win
against it. The algorithm should be somewhat generic, so it will be possible
for me to extend this algorithm to a different game. In this paper, I will
discuss genetic algorithms and why they are useful. Then I will talk about a
real time strategy game I am designing to test my genetic algorithm.

4 Background

Genetic algorithms have not been used significantly in computer science and
have not really been used in games. However, genetic algorithms have been
used to solve several problems which would be difficult to solve using a brute
force approach

In one tutorial, the author discusses the use of genetic algorithms for
determining a mathematical equations using the numbers 1 to 9 and the
operators -,+,% / to obtain a an equation that is a certain length that would
produce a certain number. If the number is a number that has two factors less
than ten such as 24, 42, 32, etc, the problem is relatively easy for a computer
to solve. However, a number such as 83 is a prime number and it would be
difficult for the computer to determine using a brute force approach. The
fitness function is simply 1/(targetNumber-number that equation generates).
As a result, suboptimal combinations of numbers and operators can quickly
be eliminated, and the algorithm works from combinations that are close to
the answer, which makes the algorithm quickly converge on a good answer.
This could be a good idea for my game because instead of using the numbers
1 through 9, the operators would operate on the constants and heuristic
evaluation functions.

Even when a person does not know what the answer is, a genetic algo-
rithm can work effectively. For example, another problem involves a bunch
of large disks in a bounded area, and trying to place the largest possible disk
within the bounded area. Although a human can find the approximate solu-
tion for a combination of disks, finding the exact solution is difficult. A brute
force approach would be inefficient, especially if there are a large number of
pixels in the area. However, a genetic algorithm is able to solve it relatively
easily. Another genetic algorithm involves creating a genetic algorithm to
play the snake game. The AI snake is intelligent and is capable of compet-
ing with a experienced human. Although programming skill was required to
code it, the programmer did not need to be skilled at playing snake.

Another research project involves using a genetic algorithm to optimize

the constants for a heuristic evaluation function that is supposed to find
the shortest possible degree-constrained spanning tree. A degree-constrained
spanning tree is a tree structure that contains all the vertices’s on a graph as
nodes with the limitation that each node cannot be connected to more than a
certain number of nodes. The shortest possible degree-constrained spanning
tree occurs when the total distance of all the links between nodes. The
conclusion for this project is that genetic algorithms can find shorter degree
constrained spanning trees than traditional heuristics, even with heuristics
intended to mislead a genetic algorithm. As a result of the success of a
genetic algorithm to create a degree constrained spanning tree, the conclusion
supports the use of genetic algorithms in other areas for other combinatorial
problems, especially constrained ones.

The Als that I am creating have personality traits, which are numbers.
The personality traits are behaviors such as an Als tendency to spend money,
attack other players, or take revenge on other people. Certain combinations
work well and some dont. For example, an aggressive Al which saves a lot
of money is not going to be very effective.

A group of researchers used of genetic algorithms to generate a formula to
predict the concentration of carbon-dioxide in the arteries, and was sucess-
full. It shows the usefulness of prediction using genetic algorithms and the
usefullness of using the genetic algorithm to generate forumulas.My current
algorithm involves the Al’s mostly making decisions on short-term goal and
some heuristics instead of trying to predict the future. As a result, it may
attack a player to gain a short-term income advantage, only to get steam-
rolled by another AT who had more troops. Even with the genetic algorithm
optimizing my Al, predicting the future would be difficult unless I modify
my Al’s design.

A potential pitfall with the genetic algorithms are evolutionary stable
strategies. Even though they may generate an interesting personality, that
personality may lead to very unintelligent behavior. For example, my ge-
netic algorithm may develop a population of turtling AI’s which build up
troops until they have enough of them to blitz the board and will only oth-
erwise fight to take back lost cities. As a result, their personalities and
their heuristic evaluation functions will be similar and different types of Al
will be unable to be created by having the turtling AI’s share the chromo-
somes/ (heuristic evaluation functions). And randomly mutating or slightly
altering the heuristic may not work. Aggressive players will lose too many
troops. Even Al’s which strike a intelligent balance between attacking and
turtling will find themselves losing as even attacking a little bit will lead to
a net loss of because the target player will be focusing all its troops on the
attacking AI. The main problem with this Al is that it is very boring to play

4

against, since a human player will just be sitting there and buying troops.
Game Theory will be one of the tools that I will apply to make the
ATD’s more human-like. Game Theory is something that the computer’s can
understand and is something that explains human behavior. The game of
chicken is an excellent example of this. In the game, two Al’s want control
of a particular city. Neither of them wants to back down because the other
players will observe that the player who backs down is weak and can be
attacked. On the other hand, if neither of them backs down, then both
players will end up spending an unnecessary amount of troops for no reason,
increasing the relative strength of other players. As a result, the game of
Chicken will greatly simplify Al behavior because there are only two possible
choices. This game also will make it far easier for me to help determine an
AT’s conflict behavior and whether my genetic algorithm is working correctly.

4.1 Game Theory Examples

The following table is an example of how game theory can be used. Here
two players want to capture a certain city. Neither of them wants to give
up because the other players will perceive them as weak-willed and easy to
attack. On the other hand, if both of them fight, then they are weakening
themselves to the benefit of a third player. The first number in the row
describes the relative payoff to player one, the second number describes the
payoff to player two, and the third number is the payoff to player three. ”t”
represents how long the players fight over the city, and the longer they fight,
the more the third player benefits.

. Fight Don’t Fight
Fight (0,0,0) | (-t+1,-t,t*2)
Don’t Fight | (-t,-t+1,0) | (-t,-t,t*2)

The following table represents the Prisoner’s Dilemma and how evolu-
tionary stable strategies can lead to suboptimal or other types of unwanted
results. For example, a population of defectors is evolutionary stable strat-
egy because any strategy which attempts cooperation will have a nega-
tive payoff while the defectors will gain a positive payoff. In my game,
this could lead to AI’s which never cooperate with each other and con-
duct diplomacy. This could lead to games being bogged down in stalemates.
: Cooperate | Defect
Cooperate (1,1) (3,-10)

Defect (-10,3) (-5,-5)

5 Development

5.1 DesignCriteria

The AI that I create should be smart enough to defeat a skilled player the
majority of the time. Also, it should have the ability to mimic human emo-
tions. However, the main focus will be on making the Al play intelligently
in a way that is enjoyable. To test this out, I will set up a game. Also, it
should be fun for players of all skill levels to play my AI, which I will test
out by getting random people to play against the Al I created. The genetic
algorithm that I create should be as generic as possible so that it can be
applied to other strategy games.

During third quarter, I will finish debugging the output of my program
since implementing the new heuristic evaluations messed it up. Afterwards, I
will spend several weeks thoroughly searching for bugs and run a no-graphics
version of my game in my genetic algorithm. While the genetic algorithm is
running, I will work on improving the speed of my rendering. Also, I will
improve the interface of my game and adding add things. I will let my genetic
algorithm optimize my heuristic evaluation functions instead of optimizing
them myself like I initially planned

5.2 Timeline

e February:

— Week 1: Make sure improved heuristics are working

— Week 2: Play game with improved heuristics to make sure they
are working

— Week 3: Finish coding genetic algorithm with no-graphics version
of my program

— Week 4: Start genetic algorithm and improve graphics rendering
speed

e March

— Week 1: Continue improving graphics rendering speed
— Week 2: Improve program interface
— Week 3: Add code to create custom maps

— Week 4: Create interface to allow different Al algorithms to be
implemented

e April

— Week 1:View results of genetic algorithm and improve upon its
flaws

— Week 2: Implement different personalities

— Week 3 and 4: Implement heuristics that allow Al to observe
patterns of other players and take advantage of them

e May: Run 2nd version of my genetic algorithm. While the algorithm
is running, I will add new units and make sure the Al knows how to
use them

e June: Run genetic algorithm with added units

5.3 Genetic Algorithms

The main advantage of a genetic algorithm is that it is capable of arriving at
an optimal solution in a relatively short time without user input, even if there
are many constants and function combinations that need to be optimized. A
genetic algorithm works by randomly determining a set of parameters and
function combinations that are represented in chromosomes. An algorithm
is run once for each chromosome based on the data in the chromosome.
Afterwards, based on the chromosome’s performance during the algorithm, a
fitness score is calculated for the chromosome. Then the chromosomes with
the lower scores are eliminated. Then the chromosomes randomly mutate and
have a small portion of their data randomly modified. Then the surviving
chromosomes "mate” and swap data, then the algorithm runs again. Genetic
algorithms have a tendency to have their chromosomes converge on locally
optimal places. For my algorithm this will be a good thing is long as the
local optima are not too far from the optima. This is because I would like a
diverse set of AI’s because they would have different personalities and make
the game more exciting. Here, we propose the use of a genetic algorithm to
optimize the heuristic evaluation functions for the Al of a strategy game.

5.4 Al Heuristics

e getIncomePower(Player p): Finds how much income a player has com-
pared with other players

e getEnemyPower(Zone z): Finds how many enemy troops are in a zone

5.5

getPotentialBorders(): Calculated the number of border cities a player
will have if they take a certain city

getAverageProximity(City c): Calculates the average distance of a city
from all the player’s cities

getTroopPower(Player p, Location loc): A total of the number of troops
around an area weighted by how close they are to loc

getZonePower(Player p, Location loc): The number of cities around a
city weighted by how close they are to loc

getPotentialNeighbors(Zone z): How many neighoring enemies a player
will have if they take a certain zone

Perecption Heuristics

These will be used by the Al to replicate human behavior by taking advantage
of patterns

5.6

HashMapjPlayer, Double; ThreatFactor: Represents how threatening
a player is based on how much they have been fighting the Al

HashMapjPlayer, Double; Percieved Assertiveness:Gives a perceived as-
sertiveness value for each player based on how often it stands its ground.

HashMapijPlayer, Double; leaderAttackFactor: Percieved likelihood of
a player to attack a game leader.

HashMapijPlayer, Double; predicability: Percieved likelihood that a
player will react predictably

Personality Traits

Agressiveness: Determines how likely a player is to attack

Assertiveness: Determines how likely a player is to stand ground in-
stead of retreat. Retreating too much will make you look like a pushover,
and retreating too infrequently will make you loose troops. It should
also measure an Al’s response to an attack

Paranoia: How much an Al will reinforce based on the number of enemy
troops in nearby cities

e Powerfulness: How likely an Al is to attack a game leader, especially
one who is threatening a win. If an Al attacks the game leader too
much, others will be more likely to sit back,and reap the spoils from
two weakened enemies

o Artillery:How likely is the Al to build artillery. This value goes up as
the number of enemy troops goes up

e RevengeFactor:How likely is the Al to attack a player that it has already
fought

6 Discussion

Converting the City class to a Zone class and having the Zone class contain
references to the locations of Al troops was successful. The coding of the Al
heuristics was somewhat simplified and my program ran somewhat faster.
However, debugging the implementation of the Zone class took far longer
than expected because I ended up accidentally modifying my code. As a
result, none of the troops were being displayed. I eventually tracked down
the error source and found out that the troops had a movement of 0. I was
surprised as I believed that any errors would involve the implementation of
the Zone class. As a result, the troops were being moved to undefined loca-
tions and being deleted. Changing the troop movement fixed the problem.
I resolved to have a more careful plan on how to implement any new code
before coding it.

I waited until I carefully planned the AI heuristics before implementing
them. I implemented the Al heuristics described in the previous section and
they printed out sensible values. Also, when I plugged in the values of these
heuristics into my findTargets() method, the output was generally between
0 and 2, which means that they have been correctly implemented. However,
I implemented the heuristics in a way that made every city owned by the Al
to turn white. Also, the AI’s never built troops.

In summary, tracking down errors has taken an unexpectedly long time,
even after I started planning. As a result, I did not accomplish as much as I
had hoped to. However, this does not surprise me because it took me several
months last year to fully implement my old Al heuristics..

7 Results

I then decided to test out the current Al algorithm to see how fast it runs.
The heuristic algorithm I currently use for the Al will be useful with the
improved AII created. The algorithm depends mostly on the number of cities
on the map and the size of the squares used to store the troops. The speed of
the algorithm does not mainly count on the number of troop presents. It runs
once every .266666 seconds, which means that the speed of this algorithm is
a significant issue. Making the AI algorithm run less often and staggering
each of the AT methods would give a significant performance boost while not
significantly affecting the intelligence of the Al

Number of Troops on Map | Time Taken in Seconds for Al algorithm
9 0.14
1024 0.16
2000 0.2
5000 0.2
6822 0.3

I then tested the graphics and rendering part of my game, which is where
I think the speed issue is the most significant. It runs once every 0.0655737
seconds so it runs 15 times per second. I do not want to make the graphics
algorithm run less often or the frame rate will be too low. Even with a low
number of troops on the map, the graphics algorithm takes too much time,
especially since the graphics and the Al algorithms do not run in parallel. As
the number of troops approaches 1000, the graphics algorithm starts taking
more time than the length of a graphics frame, which is why the frame
rate is low and the why the game is unresponsive to user input after a while.
Although I could take advantage of running parts of my game in parallel using
a dual core processing, concurrent programming makes a program difficult
to debug.

Number of Troops on Map | Time Taken in Seconds for graphics, Time(seconds) taken to run
10 0.05,0.75
1000 0.08,1.2
2000 0.15,2.25

In summary, my current code has significant speed issues. The new Al
algorithm I am designing will take up a significant amount of computing
power. Also, having more efficient code will make a genetic algorithm finish
faster and reduce the need for complex networking because I will be able to
run multiple instances of my game on the same processor core.

10

References

[1] Neville, Melvin., Sibley, Anaika.(2000). Developing a Generic genetic
algorithm. ACM, 1, Retrieved from: http://portal.acm.org/

2] Frayn, Colin. (2005, Aug. 5) Computer Chess Pro-
gramming Theory.Retrieved October 28, 2009
from:http://www.frayn.net/beowulf/theory.html

[3] Buckland, Matt. Genetic Algorithms in Plain English. October 21, 2009,
from ai-junkie:http://www.ai-junkie.com/ga/intro/gat1.html

[4] Ehlis, Tobin. (2000, Aug 10)Application of Genetic Pro-
gramming to the Snake Game.October 21, 2009 from
http://www.gamedev.net /reference/articles/article1175.asp

[5] Raidl, GR.,Julstrom, Bryant A. (2000). A weighted coding in a genetic
algorithm for the degree-constrained minimum spanning tree problem.
ACM.,1,Retrived from

[6] Shor, Mike. (2007). Retrieved from http://www.gametheory.net

[7] Sirlin, David. (2006, Apr 24). Playing to Win: Becoming the Champi-
http://chestjournal.chestpubs.org/content/127/2/579.full.htmlon ~ Re-
trieved from http://www.sirlin.net/ptw/

[8] Phelps, Selcen.,Koksalan, Murat.(2003). An Interactive Evolutionary
Metaheuristic for Multiobjective Combinatorial Optimization. 49,1726-
38 Retrieved from http://www.jstor.org

[9] Engoren,M.,Plewa, M.,O’Hara,D.,Kline,J.(2005) Eval-
uation of Capnography Using a Genetic Algo-
rithm To Predict Paco2. 127 579-84 Retrieved from
http://chestjournal.chestpubs.org/content/127/2/579.full.html

11

