COMPUTER SYSTEMS RESEARCH

3nd Quarter Version
Code Writeup of your program, 2009-2010

1. Your name: Peter Ballen Period:5

2. Date of this version of your program: 3/24/2010

3. Project title: Exploring the Use of Fuzzy Constraint Satisfaction Problems to Evaluate the Happiness of Society.

Most of this quarter has been dealing with testing the existing code instead of writing new code. Anything in bold is new from this quarter, while everything else is from the first two quarters.

For more about the testing/analysis, look at the project experiment writeup.

statetaxunemploymentbenefits.tzt:

The source of the data used by the code. I gathered the data from various .gov websites. It includes state, electoral votes, tax, and unemployment information, formatted as follows.

[image: image1.png]State
ALABAMA
ALASKA
ARIZONA
ARKANSAS

Votes

Unemployment Income Tax Rate

6.1
73
63
57

45

5
0
7
7

Population = [] //Population is an array of Voters;

Priority = [] //Priority of each Voter in Population. The size of Population must equal the size of Priority or the code will throw an error. Population and Priority should align up, the Voter in index 3 of Population should have a priority stored in the Priority array index 3.

canvas = None //Rather than pass the Canvas around, I made it global.

class Voter:

def __init__(self, myOp): //Initializing the Voter required giving it an array of two values, the first corresponding to the issue that will populate the x-axis, the second the y=axis. If myOp is given None, an array will be populated with random floats between 0 and 1. myOp is then saved as myOpnions,

def rate_full(self, proposed): //Proposed is an array of two floats, similar to myOp. Finds a float based on 1 - (distance between myOpinions and proposed). Returns that float.

def rate_partial(self, proposed, index) //Similar to rate_full, but looks only at the given index and completely ignores all other indexes in proposed.

def settag(self, tag) //Voters can be given tags, which allow the Voters to be easily identified at a later time.

def drawpoint(self, canvas, priority): //Draws the Voter onto the canvas as a dot at a location determined by myOpinions. The size of the dot is contingent on the passed priority, a larger priority will result in a larger dot. The code can be modified so that Voters with different tags are drawn differently (draw VA in pink for example)

def fixPriorities() //For the rest of the code to function properly, the list of Priorities must sum to one. However, it is manually easier to enter whole integers. This method will scale the priorities accordingly so that the priorities will sum to one.

def societyrate_full(proposed): //Finds and returns average satisfaction of all Voters in Population. Should be used to evaluate a final proposal or when using brute force.

def societyrate_partial(proposed, index) //Finds and returns average satisfaction of all Voters in Population looking only at the passed index and ignoring the rest. Useful while pruning.

def drawpointoncanvas(canvas, color, i1, i2): //Converts the point (i1, i2) with range [0,1] to an (x,y) value with range [0, 500] and draws that point on canvas with the given color. Uses TKinter. Currently only being used to draw final results, as the individual voters are drawn with the drawpoint method.

def brutesimulation()

//The only first quarter version, which uses brute force to find the optimal solution. I no longer use it very much, but it's kept for archiving purposes.

def prunesimulation()
//This is the current faster method that uses pruning. The following occurs:

//Initializes blank canvas, width = height = 500 pixels.

//Population is created. Can either be given set values of created randomly. Can also control the spacing of society by controlling the range of the random values by giving values of [.5+(random()-.5)*dSpacing,.5+(random()-.5)*dSpacing], where dSpacing ranges from 0 (all centered at .5) to 1 (randomly spread across 0 to 1).

//Priority list is created, either given set values or created randomly.

//The fixPriorities method is called to ensure that the priorities sum to one.

//The code starts by looking at the x-values. Using the societyrate_partial method, the optimal x-value is found, ignoring the entirety of the y-values.

//The optimal x-value is kept, the rest are pruned away.

//Looks at the remaining x-y-values (at this point, only the points with the optimal x-values are left). Using the societyrate_partial method, the total optimal solution is found.

 //The prunesimulation no longer displays anything on the board. That is handled in main.

//Return the optimal solution as two values (optimal x, optimal y). The values are used by main.

def main():

//Initialize all variables and the canvas.

 //Begin reading from the text file with data. Each line is split into a separate Voter.

//The lines are then split by tabs. Each line will have a state name (stored as a tag in the Voter), a state priority (the number of electoral votes that Voter should get), a tax rate (which is then scaled to be between 0 and 1) and an unemployment rate (which is also scaled to fall between 0 and 1).

 //A Voter is then initialized, given the proper values, and stored in Population.

//That Voter's corresponding priority is stored in Priorities.

//fixPriorities is run after all Voters are read in.

//prunesimulation is run to get the optimal weighted solution.

//The Voters are drawn on the board, and optimal unweighted solution is drawn in blue.

//The priorities are then all set to one and fixPriorities is called, so that each state will now have the same priority.

//prunesimulation is run again, to get the optimal unweighted solution.

//The optimal unweighted solution is drawn on canvas in red.

//The canvas is displayed, canvas.mainloop() is called, and call it a day.

4. What do you expect to work on next quarter, in relation to the goal of your project for the year?

Most of the heavy lifting is done. The code is working, I have a working test example that displays how the code can be used, if the year ended tomorrow I'd be in pretty good shape. Fourth Quarter, I want to start adding extensions I didn't get around to adding yet. One extension is to try different Voter behavior. Currently, the Voters only look at the distance between themselves and the proposal, but what about other heuristics. Seems like a good extension.

from random import *

from math import *

from Tkinter import *

from time import *

NumCategories = 2

NumVoters = 11

Population = []

Priorities = []

canvas = None

accuracy = .01

class Voter:

 def __init__(self, myOp):

 if myOp != None:

 self.myOpinions = myOp

 else:

 rawop = []

 for k in range(0, NumCategories):

 r = random()

 rawop.append(r)

 self.myOpinions = rawop

 def rate_partial(self, proposed, index):

 total = 0

 op = self.myOpinions[index]

 prop = proposed[index]

 total = pow(op-prop, 2)

 #total = sqrt(total)

 total = 1 - total

 return total

 def rate_full(self, proposed):

 total = 0

 for k in range(0, NumCategories):

 op = self.myOpinions[k]

 prop = proposed[k]

 total += pow(op-prop, 2)

 total = total / NumCategories

 total = 1 - total

 return total

 def drawpoint(self, canvas, p):

 #drawpointoncanvas(canvas, 'black', self.myOpinions[0], self.myOpinions[1])

 x = 100 + self.myOpinions[0] * 300

 y = 400 - self.myOpinions[1] * 300

 if x < 103:

 x = 105

 if x > 497:

 x = 495

 if y < 103:

 y = 105

 if y > 497:

 y = 495

 r = sqrt(50*p/3.141592857)

 canvas.create_oval(x-r,y-r,x+r,y+r,fill='black')

def fixPriorities():

 global Priorities

 total = 0.0

 for k in Priorities:

 total += k

 index = 0

 for k in Priorities:

 Priorities[index] = Priorities[index] / total

 index += 1

def societyrate_partial(proposed, index):

rating = 0.0

for k in range(0, NumVoters):

 rating += Population[k].rate_partial(proposed, index) * Priorities[k]

 rating = sqrt(rating)

rating = rating / NumVoters

if rating > 1:

 rating = 1

if rating < 0:

 rating = 0

return rating

def societyrate_full(proposed):

rating = 0.0

for k in range(0, NumVoters):

 rating += Population[k].rate_full(proposed) * Priorities[k]

rating = rating / NumVoters

if rating > 1:

 rating = 1

if rating < 0:

 rating = 0

return rating

def drawpointoncanvas(canvas, color, i1, i2):

 x = 100 + i1 * 300

 y = 400 - i2 * 300

 if x < 103:

 x = 105

 if x > 497:

 x = 495

 if y < 103:

 y = 105

 if y > 497:

 y = 495

 canvas.create_oval(x-2,y-2,x+2,y+2,fill=color,outline=color)

 return x,y

def prunesimulation():

 starttime = time()

 maxrate = 0

 maxvalues = [0,0]

 i1 = 0.0

 while i1 < 1:

 rating = societyrate_partial([i1, .5], 0)

 if rating > maxrate:

 maxrate = rating

 maxvalues[0] = i1

 i1 += accuracy

 i1 = maxvalues[0]

 maxrate = 0

 i2 = 0.0

 while i2 < 1:

 rating = societyrate_full([i1, i2])

 if rating > maxrate:

 maxrate = rating

 maxvalues[1] = i2

 i2 += accuracy

 canvas.create_rectangle(100, 100, 400, 400,fill='grey', outline='grey')

 for k in range(0, NumVoters):

 Population[k].drawpoint(canvas, Priorities[k])

 drawpointoncanvas(canvas,'white',maxvalues[0],maxvalues[1])

 print maxvalues, maxrate

def brutesimulation():

 starttime = time()

 #dSpacing 0 = perfectly aligned, 1 = perfectly random

 maxrate = 0

 maxvalues = []

 i1 = 0.0

 while i1 < 1:

 i2 = 0.0

 while i2 < 1:

 rating = societyrate_full([i1,i2])

 if rating > maxrate:

 maxrate = rating

 maxvalues = [i1,i2]

 x = 100 + i1 * 300

 y = 400 - (i2 * 300)

 i2 += accuracy

 i1 += accuracy

 for k in range(0, NumVoters):

 Population[k].drawpoint(canvas, Priorities[k])

 canvas.create_rectangle(100, 100, 400, 400,fill='grey', outline='grey')

 drawpointoncanvas(canvas,'white',maxvalues[0],maxvalues[1])

 print maxvalues, maxrate

def main():

 global Priorities, Population, canvas

 root = Tk()

 canvas=Canvas(root,width=500,height=500,bg='white')

 canvas.pack()

 for k in range(0, NumVoters):

 Population.append(Voter(None))

 #Priorities.append(randint(1,10))

 Priorities.append(80)

 for k in range(0, 10):

 Priorities.append(2)

 fixPriorities()

 #print Priorities

 prunesimulation()

 root.mainloop()

if __name__ == '__main__':

main()

