COMPUTER SYSTEMS RESEARCH 
Code Writeup, 2009-2010 

Name: Jack Chen


Period: 5 

Project title: Applications of Artificial Intelligence and Machine Learning in Othello

Programming Language(s) and other software tool(s): C++, Python

Describe how your program runs as of this version.

I wrote a referee program for Othello to run the game. The referee keeps track of the board state and allow two players to play games against each other. The referee supports AI player programs written in multiple languages as well as human players. The referee is implemented in Python and makes use of Python's subprocess module to run each player program in a child process. Running the player programs in a child process allows the referee greater control over the player programs, such as the ability to enforce time limits, and allows them to be implemented in any language. The referee communicates with each player by sending it information about the opponent player's moves and when a game starts and ends. 

I have also implemented a graphical user interface for the referee in C++ with the Qt graphics toolkit. The GUI displays the board, animates the players' moves, and allows a human to play easily by clicking on the board. The referee runs the GUI in a child process, like the players, and communicates with it in a similar way. The referee's user interface is implemented in an abstract way that allows it to be easily modified.

The referee also can run tournaments with large numbers of players. I have added support for AIs written in previous years by having the referee load these players with wrapper programs. I have also improved the referee's error handling, logging, and user interface.

I have implemented basic AI players in both Python and C++, in order to compare their performance, but most of the AI player development is in C++. First, I wrote players using minimax and minimax with alpha-beta pruning. These are used as a baseline for comparison and for testing improved minimax search algorithms.

My best AI player picks a move by iteratively deepening the alpha-beta search, which allows it to better allocate time and, in the future, to improve searches with better move ordering.

I store boards as bitboards using 64-bit integers in which each bit corresponds to one of the 64 squares on the board. Each bit indicates whether or not a piece of a certain color is on that square. One of the integers represents black's pieces and another represents white's pieces. The use of bitboards allows great speed improvements in certain operations, such as finding all possible moves or counting frontier squares, with bit manipulation techniques. The bitboard optimizations made the overall speed of the AI about 5 times faster, enough to search about one ply deeper. Bitboards are also advantageous in terms of memory use, since they are very compact.

I have explored Machine Learning techniques for the optimization of evaluation function parameters. I created a program to generate Othello boards for this training. This program repeatedly plays two AIs with randomized move selection against each other. The players have a small probability of choosing suboptimal moves in order to generate a variety of boards. 

My evaluation function takes a linear combination of a set of features, including the number of pieces on different types of squares (in particular, on corners and squares adjacent to corners), the number of possible moves, frontier squares, and parity. The weights for these features are trained using a batch gradient descent method. The game is divided into one stage for each of the possible number of pieces on the board. A separate set of weights is trained for each stage, starting from the last stage. The target value of each board for the stage is determined with a minimax search based on the already trained weights for later stages. The weights are then converged to minimized error with a batch gradient descent algorithm. In each epoch, a modified line search is used to determine the distance the weights are modified in the direction of steepest decent. This method repeatedly multiplies the learning rate by two and checks whether this set of weights reduces the error. This dynamic learning rate helps avoid problems with a fixed learning rate: extremely slow convergence when the learning rate is too small or convergence to a poor set of weights when the learning rate is too large.

What do you expect to work on next quarter, in relation to the goal of your project for the year?

I will work on several improvements on the AI player, such as:

· NegaScout and MTD(f), minimax search algorithms that improve on alpha-beta pruning

· Using a transposition table to cache board positions that have already been evaluated

· Selective game-tree search

· Quiescence search

· Other machine learning techniques to improve heuristics and move decisions, such as genetic algorithms, artificial neural networks, and particle swarm optimization

