
Applications of Artificial Intelligence and
Machine Learning in Othello

Jack Chen
TJHSST Computer Systems Lab 2009-2010

Abstract

The purpose of this project is to explore Artificial 
Intelligence techniques in the board game Othello. The 
project focuses on the creation and evaluation of AI players 
for Othello. It explores several techniques used in strong AI 
players, including improvements to minimax game-tree 
search algorithms and higher-quality evaluation functions. 
It also investigates machine learning methods to enable AI 
players to improve the quality and speed of play 
automatically based on training and experience.

Introduction and Background

The primary aspect of most AI players is the search 
algorithm, which is used to evaluate a board state based 
on a prediction of future moves from that state. The 
standard basic game-tree search algorithm is minimax with 
alpha-beta pruning. I plan to implement several 
improvements on minimax search. NegaScout and MTD(f) 
are two minimax search algorithms that can reduce the 
number of nodes that must be searched compared to 
alpha-beta pruning by searching with a null-window, where 
alpha and beta are almost equal. Null-window searches 
produce many more cutoffs than alpha-beta pruning.

An important way to improve search speed is to cache 
information about board states that have already been 
evaluated in a transposition table, which allows the player 
to avoid repeated searches. Selective search algorithms 
can further enhance game-tree search by pruning parts of 
the game tree that probably will not affect the overall 
minimax value. This allows the player to search much 
deeper in the relevant parts of the game tree. I will also 
investigate other search techniques, such as quiescence 
search.

I will also investigate opening books, which allow much 
better and faster play in the early game by storing 
previously computed information about early game board 
states. I will explore parallelization of the search 
algorithms, as well as the machine learning algorithms 
used to train the AI.

Development

The first part of this project was the implementation of an 
Othello referee program to run the game. The referee 
keeps track of the board state and allow two players to play 
games against each other. The referee supports AI player 
programs written in multiple languages as well as human 
players. I have also implemented a graphical user interface 
for the referee. The GUI displays the board, animates the 
players' moves, and allows a human to play easily by 
clicking on the board. 

The primary focus of the project was on Othello AI players. 
I have investigated several AI techniques, including 
improved minimax search algorithms such as NegaScout 
and MTD(f). 

I store boards as bitboards, which allow great speed 
improvements in certain operations, such as finding all 
possible moves or counting frontier squares, with bit 
manipulation techniques. 

I have explored Machine Learning techniques for the 
optimization of evaluation function parameters. My 
evaluation function takes a linear combination of a set of 
features, including the number of pieces on different types 
of squares (in particular, on corners and squares adjacent 
to corners), the number of possible moves, frontier 
squares, and parity. The weights for these features are 
trained using a batch gradient descent method. The game 
is divided into one stage for each of the possible number of 
pieces on the board. A separate set of weights is trained for 
each stage, starting from the last stage. The target value of 
each board for the stage is determined with a minimax 
search based on the already trained weights for later 
stages. The weights are then converged to minimized error 
with a batch gradient descent algorithm using a modified 
line search. 

The preliminary results are displayed in the chart below. 
Corners and x-squares are extremely important, especially 
early in the game, while mobility becomes increasingly 
important near the end of the game.

010203040506070
-3000

-2000

-1000

0

1000

2000

3000

4000

5000

corner
c-square
2
3
x-square
5
6
7
8
9
piece
moves
frontier
parity


