
Design of a 3D Graphics Engine
TJHSST Senior Research Project Proposal

Computer Systems Lab 2009-2010

Joseph Hallahan, period 5

April 7, 2010

Abstract

Physics play a large role in many modern pro-
grams. Simulations of every kind and numer-
ous video games use physics equations and
functions in order to generate as realistic sce-
nario as possible. The uses of a physics en-
gine, a framework of various pieces of code
containing these physics functions, are many.
A physics engine that works along with a
graphics engine - one that could take on both
duties simultaneously, would be very useful
indeed. This project involves creating a fully
runnable graphics engine that also supports
physics relating to collision detection. In ad-
dition to displaying and performing physics
on 2D images, it will also keep track of key-
board input. C++ will be the language used
to create this engine, and the libraries used
will be SDL and OpenGL.

keywords: graphics engine, physics en-
gine, SDL, OpenGL, C++

1 Introduction

1.1 Situation/Statement of
Problem

The Engine is often the most important part
of a program. It contains all the function-
ality needed for whatever purposes the pro-
gram may need. Some are used for graphics,
some for physics, and some for both. One fea-
ture common to all of them is that they can
be used for many different projects, rather
than just the one they are originally made
for. As a result, they must either be able to
have all this functionality without needing to
rely on any external information, or use such
generic external information that any similar
program would be able to provide it as well.

1.2 Purpose

The goal of this project is to create a working
engine that focuses both on two-dimensional
graphics and physics. It should be able to be

1



useful for various projects, including possi-
bly some agent based modeling, gaming, and
simulations. It will need to be able to be used
as a standalone program to ensure that it is
not tied specifically to the programs I test
it with. It will need to do the math related
to the drawing and movement of shapes, and
also relating to collision handling. The engine
will also need to be able to get input from the
user, particularly from the keyboard.

2 Background

Graphics engines are very important to the
work done by many programmers today. In
the process of creating an application, after
the initial design phases are complete, the
first thing the programming team will typ-
ically do is begin work on the application’s
engine. Some applications, if they are new
and different from what has been done be-
fore, will need an entirely new engine and, as
a result, will require a lot more work. How-
ever, if it is similar to one that has already
been completed and released, it is much eas-
ier to use an existing engine than to create
a new one. In addition to reqiring less work,
completed engines have already been tested
for stability and compatibility, so programs
that use them typically do not need as much
post-production work.

Because graphics code can become rather
complex and not user-friendly, it would make
an excellent candidate for use in an engine.
Encapsulating all the code needed for render-
ing graphics would take a large burden off of
programmers who will then be able to spend

Figure 1: A window created with SDL.

more time on the less rigid parts of projects.
The basic code for graphics does not change
very much from application to application,
so putting it in a separate file for other pro-
grams’ use would be a good idea.

3 Development

3.1 Structure in C++

In the first semester of this year I explored the
OpenGL library and learned how to use it in a
single C++ source code file. My first project
was simply a program that could draw var-
ious 2D or 3D shapes in OpenGL, but this
was very basic and not really useful outside
of that single project. However, it did demon-
strate how OpenGL was used, and was able

2



to render text and get user input as well as
simply rendering shapes. In the second quar-
ter, I expanded on this by attempting to use
multiple source code files in a project, but
unfortunately I thought doing so would be
more similar to Java and, as a result, the
source files would not compile. While a lot
of my code was sound, there was no way to
make the files talk to each other and find all
the methods needed to work. However, the
methods I wrote are very similar to those I
needed for this quarter’s project. One ma-
jor difference my project has undergone this
quarter is the introduction of a new library,
SDL, into the project. SDL, or Standard Di-
rectMedia Layer, is a useful library for C++
that allows fairly fast graphics, audio, and in-
put to be used. However, the main point of
my project is to create a graphics/physics en-
gine, not to verify these claims of speed. The
other advantage SDL has is its compatibil-
ity with OpenGL and the relative ease with
which they work together. All that is needed
to use OpenGL code in an SDL project is to
change three or four lines of code. Processing
input and window creation with SDL is much
easier than with OpenGL, and that is what
I use it primarily for in this iteration of my
project. I use OpenGL for the actual drawing
itself. I’m not using any of SDL’s audio abil-
ities in this project, although they are sup-
posedly well implemented as well. I am using
the same sort of structure as I had last quar-
ter, with a source file containing function and
class definitions, a header file containing dec-
larations for those functions and classes, and
a test file containing a class extending the en-
gine and the program’s ”main()” method.

3.2 Collisions and Physics

While there are many ways of detecting colli-
sions between different objects, the handling
of them is a different method. The simplest
way is with rectangles, in which in the event
of a collision (in a frictionless vacuum and as-
suming the collision is completely elastic) the
rectangles both simply reverse their x and y
velocities. Probably some of the hardest ways
involve trying to figure out what to do when
multiple concave shapes with some curved
edges all collide. In certain difficult scenar-
ios what some programmers do is imagine
what is known as a ”bounding box” that com-
pletely or at least mostly encapsulates each
irregular shape, and then treats each bound-
ing box using the aforementioned method for
rectangle collision handling. Although in real
life there are many different variables affect-
ing how collisons work, to keep my program
simpler for now I assume several things about
my colliding objects. I assume that all colli-
sions are elastic, in a frictionless vacuum, the
objects are all identical mass, and there are
no external forces acting on anything, such as
gravity.

4 Tests and Analysis

My program, though it is called ”Pong2,” ac-
tually cannot, at the moment, play a game
of Pong. It was originally going to, but most
of my time this quarter was spent improv-
ing the engine rather than working on the
test program. Unexpected weather resulted
in losing a lot of the time I might have oth-

3



erwise spent on this; however, I am satisfied
with what got done on the engine itself so
far. For the first time, I may not be starting
a whole new project next quarter - I will be
able to continue working on this one. Adding
SDL to the project was beneficial in that it
now correctly creates a window, something it
was unable to do as of last quarter. My goal
for the initial testing of my engine was just to
create a few circles and rectangles and bounce
them around the screen. The circles would
use basic bounding boxes for collision detec-
tion and handling, and the rectangles would
be easy enough to deal with. However, al-
though the Circle class worked flawlessly and
without generating any errors, the Rectangle
class for some reason would not work prop-
erly. Although it was nearly identical to the
Circle class, it kept throwing ” ’Rectangle’ is
not a type” errors. I eventually had my code
looked at and mostly fixed, but as of right
now my test program is for circles only.

5 Results

I would have preferred to put more function-
ality in the engine this quarter, but I am at
least pleased that I got my structure issues
from last quarter resolved. Apparently my
second quarter OpenGL code was flawed in
some way, because my drawing code didn’t
work at first. This may have just been due to
a missing line or two, since it didn’t generate
any errors or anything. The switch from sep-
arate files to a Code::Blocks (my IDE) project
permitted the files all to be compiled and
linked correctly on my Windows system, but

unfortunately I do not have the Linux skills
necessary to do the same thing from a com-
mand line. Luckily Code::Blocks is appar-
ently open-source and therefore compatible
with Linux, so by next quarter I hope to be
able to install it as part of my personal quota
on the school computers.

6 Conclusion

Overall, even with the scheduling issues this
quarter, I have completed a lot of work to-
ward my eventual goal, and next quarter
I hope to begin more complicated collision
handling and physics code. This program
(Pong2.cpp) correctly ran despite not con-
taining a single line of graphics or physics
code. As a matter of fact, the fact that the
main() method consists of three lines is a tes-
tament to the success of the engine in tak-
ing a workload off of a programmer using it.
This project is actually an engine, as opposed
to my earlier efforts: a single one-time-use
file and a header file used as a library. My
code not only creates all the resources needed
for a program to run, but also runs it and
stops when it is finished. My biggest changes
to this iteration of my project were adding
this extra functionality, adding SDL, and be-
ginning to add some physics methods. Next
quarter I hope to be able to improve upon my
collision and physics code, and come up with
a program that is able to test all of that. My
”Pong” program will go by the wayside in fa-
vor of a new test program that can illustrate
the full functionality of the engine.

4



7 Bibliography

• Development of a 3D Graphics Engine
(Kassing)

• Modular Architecture for Computer
Game Design (McNeill)

• Multi-threaded Game Engine (Tulip,
Bekkema, Nesbitt)

• Interactive 3D Geometry in OpenGL
(Welsh)

• FROG: The Fast & Realistic OPENGL
Displayer

• Simple and rapid collision detection us-
ing multiple viewing volumes (Fan, Wan,
Gao)

• Some code used from
”http://www.tjhsst.edu/ dhy-
att/superap/opengl.html”

5


