
Design of a 3D Graphics Engine for 
use in Various Applications

Joseph Hallahan
Computer Systems Lab 2009-2010

 Abstract 
Physics play a large role in many modern programs. 
Simulations of every kind and numerous video games use 
physics equations and functions in order to generate as 
realistic scenario as possible. The uses of a physics engine, 
a framework of various pieces of code containing these 
physics functions, are many. A physics engine that works 
along with a graphics engine - one that could take on both 
duties simultaneously, would be very useful indeed. This 
project involves creating a fully runnable graphics engine that 
also supports physics relating to collision detection. In 
addition to displaying and performing physics on 2D images, 
it will also keep track of keyboard input.

Background and Introduction
The Engine is often the most important part of a program. It contains all the 
functionality needed for whatever purposes the program may need. Some are used 
for graphics, some for physics, and some for both. One feature common to all of 
them is that they can be used for many different projects, rather than just the one 
they are originally made for. As a result, they must either be able to have all this 
functionality without needing to rely on any external information, or use such generic 
external information that any similar program would be able to provide it as well.

The goal of this project is to create a working engine that focuses both on two-
dimensional graphics and physics. It should be able to be useful for various projects, 
including possibly some agent based modeling, gaming, and simulations. It will need 
to be able to be used as a standalone program to ensure that it is not tied specifically 
to the programs I test it with. It will need to do the math related to the drawing and 
movement of shapes, and also relating to collision handling. The engine will also 
need to be able to get input from the user, particularly from the keyboard.

Discussion 
This project is actually an engine, as 
opposed to my earlier efforts: a single 
one-time-use file and a header file 
used as a library. My code not only 
creates all the resources needed for a 
program to run, but also runs it and 
stops when it is finished. My biggest 
changes to this iteration of my project 
were adding this extra functionality, 
adding SDL, and beginning to add 
some physics methods. Next quarter I 
hope to be able to improve upon my 
collision and physics code, and come 
up with a program that is able to test 
all of that. My "Pong" program will go 
by the wayside in favor of a new test 
program that can illustrate the full 
functionality of the engine.Results and Conclusions

I would have preferred to put more functionality in the engine this 
quarter, but I am at least pleased that I got my structure issues from last 
quarter resolved. Apparently my second quarter OpenGL code was 
flawed in some way, because my drawing code didn't work at first. This 
may have just been due to a missing line or two, since it didn't generate 
any errors or anything. The switch from separate files to a Code::Blocks 
(my IDE) project permitted the files all to be compiled and linked 
correctly on my Windows system, but unfortunately I do not have the 
Linux skills necessary to do the same thing from a command line. 
Luckily Code::Blocks is apparently open-source and therefore 
compatible with Linux, so by next quarter I hope to be able to install it as 
part of my personal quota on the school computers.

A window created with SDL


	Slide 1

