COMPUTER SYSTEMS RESEARCH
Portfolio Update 3rd Quarter 2009-2010
Research Paper, Poster, Slides, Coding, Analysis and Testing of your project's program.

Name: Jason Koenig, Period: 5, Date: 4/9/10

Project title or subject: Design and Implementation of a Functional Programming Language.

Computer Language: Python

Describe the updates you have made to your research portfolio for 3rd quarter.

1. Research paper: Paste here new text you've added to your paper for 3rd quarter. Describe and include new images, screenshots, or diagrams you are using for 3rd quarter.

Specify text you've written for any of the following sections of your paper:

The new text is circled in the paper printout. I mostly worked on expanding the Implementation section, as that is where most of my work has gone this quarter.

2. Poster: Copy in new text you've added to your poster for 3rd quarter.

List the titles you're using for each of your subsections. Include new text you're adding

· Subsection heading: Results and text:

· There is support for imperative programming. Recursive functions work properly.

3. Presentation slides: Provide a brief outline summarizing the main points of your presentation for 3rd quarter

The presentation does not need to be modified much, except to include the new ordered evaluation parts of the program, as well as the print statement.

4. Coding: attach new code that you wrote 3rd quarter. Describe the purpose of this code in terms of your project's goal and research. Also provide clear commentary on the main sections of your code.
See code writeup.

5. What is your focus for wrapping up your project for 4th quarter?
The focus will be on creating the supplemental part of the language. Example programs, tutorials, etc. all need to be created. I also need to develop a standard library of code to enable higher functionality. The core language is nearing completion, so I will need to focus on these aspects.

COMPUTER SYSTEMS RESEARCH
Code Writeup of your program, example report form 2009-2010

Your name: Jason Koenig, Period: 5

Date of this version of your program: 4/9/10

Project title: Design and Implementation of a Functional Programming Language

Describe how your program runs as of this version. Include

Currently the code is split into a number of Python files. Each is responsible for a specific module of the interpreter. A number of smaller programs act as glue, pulling together the various modules and actually performing the execution. The first part is the lexical analyzer, which turns the sequence of characters into a sequence of tokens. It also parses the constants to produce values, and un-escapes the strings to produce an in memory representation.

The parser is the next stage. The parser turns the linear token stream into the first revision of the graph that will eventually be executed as the program. The parser has many lines of code, but as it is a simple recursive descent parser, it is not terribly complex to understand. In the Python version, techniques were used to make the code smaller, in an attempt to make it more concise and readable.

The parser hands its graph to the optimizer. Despite its name, the optimizer has a larger role than simply to make the code execute faster. The optimizer is responsible for the transformation of the graph from a lexical one into one which the executor can use. This involves the removal of variable names, and the reduction of constructs such as let from their tree representation into the graph form. This requires It also performs lambda lifting, to allow the code to be compiled into a linear instruction stream. This is were most of my work second quarter has gone.

Lambda lifting is the process of turning a dynamic function into a static one. For example, consider the function power which produces a function which produces a function which performs that operation: {n| {x| x^n}}. The function would normally have to be re-created every time the function was executed. This would mean dynamic code compilation, which would be extremely complex. Lambda lifting solves this by introducing partial applications. Instead of two functions, the extra variables from the internal function (known as free variables, in this case “n”) are made hidden parameters of a new hidden function. Thus the code becomes {n| {x, N| x^N}.n}. The new parameter is N. The outer function thus returns a partial application of this new function to its argument, n. The internal function then has no code changes because these have been replaced by arguments, and can be compiled. A partial application is identical to a pure function in my language because it makes use of currying functions. The transformation does nothing to the result of the program, but can make it significantly faster.

The executor is the final stage of program execution. The interpreter is responsible for walking the graph and performing the instructions found there. For example, if the expression 4+5 is encountered, then it will be replaced by 9, the result. This value can then propagate up to the next level, which might have been a multiply operation, a print statement, or a comparison. By building up these simple operations, such as math operations, if else operations, and list manipulations, much more complex programming can be specified. This is actually one of the simpler parts of the program, as its operations are are very similar (find arguments, compute result, put answer back on graph).

In addition, the code can now execute sequential constructs through the do/done construct. This code takes several statements and executes them in order. This allows the code to have side effects, such as printing the the screen, in a simple and intuitive manner. This required changes throughout the code, from the parser to the executor.

Novel Code:

#in the executor.

if t == 'do':

f = graph.left(cell)

r = 0

while graph.tag(f) == ':':

r = graph.left(f)

self.evaluate(graph,r)

f = graph.right(f)

graph[cell] = ('?',graph.getcell(r))

return

#in the optimizer

def collapse_lets(self, graph, root, environ):

stack = [root]

while len(stack)>0:

node = stack.pop()

nodet = graph.tag(node)

if nodet == ':' or nodet == '@':

stack.extend([graph.left(node),graph.right(node)])

elif nodet == '?':

stack.append(graph.left(node))

elif nodet == 'do':

stack.append(graph.left(node))

elif nodet == '$':

if environ.addrof(graph[node][1]) != None:

graph[node] = ('?',environ.addrof(graph[node][1]))

self.smartdump(graph)

else:

print 'error: unbound variable:', graph[node][1]

elif nodet == 'let':

identlist = graph.left(node)

expr = graph.right(node)

environ.push_level()

a = identlist

values = []

while True:

if graph[a][0] == '~':

break

equals = graph.left(a)

a = graph.right(a)

i = graph[graph.left(equals)][1]

v = graph.right(equals)

values.append(v)

environ.add_id(i,v)

for v in values:

self.collapse_lets(graph,v,environ)

self.collapse_lets(graph,expr, environ)

graph[node] = ('?',expr)

self.smartdump(graph)

environ.pop_level()

elif nodet == 'lambda':

print 'error: still a lambda left!'

return False

return root

#in parser

def do_part(self):

if not self.root_expr():

print "error: do/done construct malformed"

return False

current = self.graph.mk_cons(self.top,None)

statments = current

while True:

if not self.match(';'):

break

if not self.root_expr():

print 'error: semicolon but no futher variable assignment in do statement'

b = self.graph.mk_cons(self.top,None)

self.graph[current][2] = b

current = b

self.graph[current][2] = self.graph.mk_nil()

if not self.match('done'):

print 'error, no "done" after "do". (did you forget a semicolon between statments?)'

return False

self.top = self.graph.mk_cell('do',statments,None)

return True

#in lexer

def evaluate(self,lexeme):

if lexeme[1] == 'Num':

return ('num',int(lexeme[0]),lexeme[2])

if lexeme[1] == 'Id':

if lexeme[0] in ['if','then','else','let','in','or','and','xor','mod','do','done']:

return (lexeme[0],None,lexeme[2])

return ('id',lexeme[0],lexeme[2])

if lexeme[1] == 'Str':

return ('string',self.unescape(lexeme[0]),lexeme[2])

if lexeme[1] == 'Comment':

return None

if lexeme[1] in ['{','}','(',')','[',']','|',':',';',',','.','-','->','@','#','$',\

'%','^','&','+','/','*','!','!=', '<','>','<=','>=', '<<','<<','=','==']:

return (lexeme[1],None,lexeme[2])

return 'Error'

