COMPUTER SYSTEMS RESEARCH
Portfolio Update 3rd Quarter 2009-2010
Research Paper, Poster, Slides, Coding, Analysis and Testing of your project's program.

Name: Jennifer Lee, Period: 05, Date: 4/7/2010

Project title or subject: Automated Detection of Human Emotion

Computer Language: Python + Webcam

Note: Now for full credit on all assignments you must provide specific plans and work using a degree of sophistication of algorithms and data structures at or beyond the level of APCS, AI 1/2, Parallel 1/2. Using shell programs or code available on the Web or in a book is not sufficient for full credit. You must provide actual development of your own code and research, analysis and testing of this code of your own. Be sure to list specific data structures, algorithms and coding you are doing at a sufficient level of sophistication for full credit. Also for full credit, you cannot merely repeat the same algorithms/data structures week after week – your program and your learning need to be evolving at a sophisticated level.

Describe the updates you have made to your research portfolio for 3rd quarter.

1. Research paper: Paste here new text you've added to your paper for 3rd quarter. Describe and include new images, screenshots, or diagrams you are using for 3rd quarter.

Specify text you've written for any of the following sections of your paper:

- Development section(s) – the work you've actually done

- Emotion Recognition: Backprogpogation is used to determine which emotion is expressed and also allows corrections to be made to the classifications. This allows the computer to learn as more data is added and thus, theoretically, make the program better as time goes on.

- Software - The python pygame package is also used to display the webcam data real time and build a GUI.

- Results – if you're reaching any preliminary conclusions

Figure 4 shows the preliminary results of testing the happiness expression.

	
	Happy
	Neutral
	Angry
	Sad

	Happy
	0.4
	0.4
	0.2
	0

Results, after ten trial runs, show that the program has difficulty differentiating between happy and neutral expressions, but rarely confuses happiness with anger or sadness. This is most likely due to the fact that mouth movement, the more differentiable of the two marker sets, is completely opposite for happiness and anger/sad. However, the test set consisted of only myself, thus as the test set expands, I expect these results to improve.

- Additions to your bibliography

RQ. Feitosa et al, "Facial Expression Classi

fication Using RBF AND Back-Propagation Neural Networks", http://citeseerx.ist.psu.edu/viewdoc/download?doi=10, 2000.

· images, screenshots, or diagrams in your paper

· [image: image1.jpg]

Sample Testing Image

2. Poster: Copy in new text you've added to your poster for 3rd quarter.

List the titles you're using for each of your subsections. Include new text you're adding

- Subsection heading: Results and text:

Results, after ten trial runs, show that the program has difficulty differentiating between happy and neutral expressions, but rarely confuses happiness with anger or sadness.

- images, screenshots, or diagrams in your poster.

3. Presentation slides: Provide a brief outline summarizing the main points of your presentation for 3rd quarter

Basically, backpropogation is complete and the preliminary results were added.

4. Coding: attach new code that you wrote 3rd quarter. Describe the purpose of this code in terms of your project's goal and research. Also provide clear commentary on the main sections of your code.

import math

import random

import string

def makeMatrix(I, J, fill=0.0):

 m = []

 for i in range(I):

 m.append([fill]*J)

 return m

def sigmoid(x):

 return math.tanh(x)

def dsigmoid(y):

 return 1.0 - y**2

class NN:

 #Neural Networks

 def __init__(self, ni, nh, no):

 # number of input, hidden, and output nodes

 self.ni = ni + 1 # +1 for bias node

 self.nh = nh

 self.no = no

 # activations for nodes

 self.ai = [1.0]*self.ni

 self.ah = [1.0]*self.nh

 self.ao = [1.0]*self.no

 # create weights

 self.wi = makeMatrix(self.ni, self.nh)

 self.wo = makeMatrix(self.nh, self.no)

 # set them to random vaules

 for i in range(self.ni):

 for j in range(self.nh):

 self.wi[i][j] = rand(-0.2, 0.2)

 for j in range(self.nh):

 for k in range(self.no):

 self.wo[j][k] = rand(-2.0, 2.0)

 # last change in weights for momentum

 self.ci = makeMatrix(self.ni, self.nh)

 self.co = makeMatrix(self.nh, self.no)

 def update(self, inputs):

 if len(inputs) != self.ni-1:

 raise ValueError, 'wrong number of inputs'

 # input activations

 for i in range(self.ni-1):

 #self.ai[i] = sigmoid(inputs[i])

 self.ai[i] = inputs[i]

 # hidden activations

 for j in range(self.nh):

 sum = 0.0

 for i in range(self.ni):

 sum = sum + self.ai[i] * self.wi[i][j]

 self.ah[j] = sigmoid(sum)

 # output activations

 for k in range(self.no):

 sum = 0.0

 for j in range(self.nh):

 sum = sum + self.ah[j] * self.wo[j][k]

 self.ao[k] = sigmoid(sum)

 return self.ao[:]

 def backPropagate(self, targets, N, M):

 if len(targets) != self.no:

 raise ValueError, 'wrong number of target values'

 # calculate error terms for output

 output_deltas = [0.0] * self.no

 for k in range(self.no):

 error = targets[k]-self.ao[k]

 output_deltas[k] = dsigmoid(self.ao[k]) * error

 # calculate error terms for hidden

 hidden_deltas = [0.0] * self.nh

 for j in range(self.nh):

 error = 0.0

 for k in range(self.no):

 error = error + output_deltas[k]*self.wo[j][k]

 hidden_deltas[j] = dsigmoid(self.ah[j]) * error

 # update output weights

 for j in range(self.nh):

 for k in range(self.no):

 change = output_deltas[k]*self.ah[j]

 self.wo[j][k] = self.wo[j][k] + N*change + M*self.co[j][k]

 self.co[j][k] = change

 #print N*change, M*self.co[j][k]

 # update input weights

 for i in range(self.ni):

 for j in range(self.nh):

 change = hidden_deltas[j]*self.ai[i]

 self.wi[i][j] = self.wi[i][j] + N*change + M*self.ci[i][j]

 self.ci[i][j] = change

 # calculate error

 error = 0.0

 for k in range(len(targets)):

 error = error + 0.5*(targets[k]-self.ao[k])**2

 return error

 def test(self, patterns):

 for p in patterns:

 print p[0], '->', self.update(p[0])

 def weights(self):

 print 'Input weights:'

 for i in range(self.ni):

 print self.wi[i]

 print

 print 'Output weights:'

 for j in range(self.nh):

 print self.wo[j]

 def train(self, patterns, iterations=1000, N=0.5, M=0.1):

 # N: learning rate

 # M: momentum factor

 for i in xrange(iterations):

 error = 0.0

 for p in patterns:

 inputs = p[0]

 targets = p[1]

 self.update(inputs)

 error = error + self.backPropagate(targets, N, M)

 if i % 100 == 0:

 print 'error %-14f' % error

def demo():

#infile = open('d_a.txt')

#temp = infile.read()

#weights = temp.split('\n')[:-1]

pat = [

[[.05644, 0,0,0,184.399,0,0,0], [1,0,0,0]],

#happiness

[[.05644, 0,0,0,184.399,0,0,0], [0,1,0,0]],

[[.05644, 0,0,0,184.399,0,0,0], [0,0,1,0]],

[[.05644, 0,0,0,184.399,0,0,0], [0,0,0,1]]

]

 # create a network with two input, two hidden, and one output nodes

n = NN(8, 2, 4)

n.train(pat)

 # test it

n.test(pat)

if __name__ == '__main__':

 demo()

Several of the code has been referenced from other backpropogation codes for the time being. Parts of this will be rewritten to optimize the code for my program.

 5. Testing, Analysis – specific listings/descriptions of the tests and analysis you've done this

 quarter.

 Tested mainly the happiness emotion and tweaked problems as I went on.

Results after 10 tests are:

	
	Happy
	Neutral
	Angry
	Sad

	Happy
	0.4
	0.4
	0.2
	0

5. Running your project – describe what your project's program actually does in it's current stage. Include current analysis and testing you're doing. Specifically what have you done this quarter.

Currently, the program can take webcam data, track it, and classify the emotion using backpropogation. It can also take in new data to influence the weights in th backpropogation. All that remains is further testing and GUI building. GUI building is currently very basic and only shows webcam feed data.

6. What is your focus for wrapping up your project for 4th quarter?

GUI building is basically all that remains.

