
Distributed computing exists to spread computationally intensive
problems over a wide array of machines in order to obtain results
more quickly than possible on one machine. This approach requires
a large number of less powerful machines in place of one more
powerful, more expensive, supercomputer necessary with a
traditional approach. The largest array of such computers that exists
today is a decentralized network of machines that communicate with
one another via HTTP through web browsers known as the Internet.
This research project seeks to combine these two ideas by
harnessing the power of the Internet through widely available HTML
and Javascript in browsers with PHP on the side of the server to
perform large problems with relative ease. The project hopes that the
wide user base available due to use of web technologies will
compensate for the speed decrease asociated with using Javascript
for calculations.

Display
If the user wishes to view the results of the project they are working on, they can visit
the display page which uses the new HTML canvas object to display the results.
Separating the results from the calculations in this way allows users to focus their
computing cycles on calculating the problem, and then view the results when all
calculations have been completed. The results stored in the data infrastructure are
queried from the server and iterated through. The results are first broken up by
semicolon, then by commas and stored in arrays for easier access. Color objects
included in the ray tracing engine are then created using these values and stored in
another array. The engine is then told to render the colors in the array to pixels on the
canvas. This could be improved upon in the future by having the server do this
rendering, and saving the rendered image as a JPEG. This JPEG could then be
displayed to each volunteer, significantly reducing the bandwidth required to pass the
displayed results back and forth.

Implementation
To test the framework and make generalization easier for more advanced applications.
A ray tracing example was implemented in Javascript. When the calculation page is
visited, the volunteer runs the initialization function, which sends a message containing
its IP address to the server. The server stores this IP address and creates a unique id
and folder for this user in the data structure. In the folder is placed a problem, and a
new increment value set to 1. The volunteers browser receives this first problem
through the AJAX update function and stores it in a buffer. The data that is received is a
row number, and the number of pixels in that row. The volunteer then creates an array
for storing the calculated pixel values. Using the modified ray tracing engine, the pixel
values for this row are calculated and stored in this array. These array values are then
serialized, with individual color values separated by commas, and pixel values
separated by semicolons. This result is then sent to a message function on the server,
which updates the results, the users current problem, and both the user and global
incremental variables. The user is then sent another data set to calculate and the
process is repeated.

Trends
The speed can be seen to decrease as the number of volunteers
increase. The increase seems to follows a pattern of exponential
decay, which is to be expected because the work is being done by
one node in the first case, is split in half in the second case, into
thirds in the third case, etc. The speed does however seem to be
approaching an asymptote at which the speed cannot be increased
any more.

Given that a framework for parallelization using web technologies
was created, it was proved that such a system is feasible. The more
important aspect of such a system is whether or not it is practical
given the relatively slow speed of scripts that are executed in the
browser, such as Javascript. This slow speed was hoped to be made
up for by the increased user base gained by using such
technologies. Because the decrease in time is approaching an
asymptote, a large number of volunteers past a certain point will
essentially be useless. For this reason, the viability of the framework
is in doubt with current technologies. As the speed of Javascript
engines increase with modern browsers like Firefox and Chrome this
will improve.

1. L. F. G. Sarmenta, “Sabotage-tolerance mechanisms for volunteer
computing systems”, Future Generation Computer Systems, 2002.

2. L. F. G. Saramenta and S. Hirano, “Bayanihan: Building and
Studying Web-Based Volunteer Computing Systems Using Java”,
Elsevier Preprint, 1998.

3. L. F. G. Saramenta and S. Hirano, “Sabotage-tolerance
mechanisms for volunteer computing systems”, Alteneo de Manila
University, 2002.

4. D. Toth and D. Finkel, “Increasing the Amount of Work Completed
by Volunteer Computing Projects with Task Distribution Policies”,
Worcester Polytechnic Institute, 2008.

Problem
Modern attempts at Internet based volunteer networks all require the
user to download and install some software, either a standalone
program, or the Java Runtime Environment to contribute their
processor cycles to a computing project. This limits the number of
users that can contribute to the project because some users do not
have permissions to install software on their computer, are weary of
third party software, or are not technologically savvy enough to
install or use the software. This project seeks to answer the
question, can a framework be created that is more user friendly for
both the volunteers, and the organizers of volunteer computing
networks, using current web technology that require no installation or
technical knowhow on the part of the volunteers? This approach
would allow anyone to contribute their computing resources to the
cause they wish to support by simply visiting a website without
installing any software.

Introduction
This project aims to create a framework that allows researchers to
harness the tremendous number of nodes available over the Internet
for volunteer computing. A web interface for project management will
allow for a manager-worker task distribution model to be set up with
relatively little knowledge of web technologies, and could run on any
operating system. If the framework comes to fruition and is
satisfactorily accessible, fault tolerant, secure, and efficient, a
sample problem to demonstrate the use of the framework will be
implemented. The results of these projects, given an extension to the
framework to format the data in the required manner could be sent to
one of the various projects already using volunteer networks
(Folding@home, SETI@home, etc).

Distributed systems are often used in graphics processing. Modern
day graphics cards rely on many processors that can calculate in
parallel using programming languages like CUDA to render
graphically intensive scenes. Raytracing is an excellent way to utilize
a parallel architecture for rendering a scene because each pixel
calculation is independent of one another. In this way, each
volunteer can receive data points telling them which row to calculate,
perform its calculation independent of the other workers, and send
the calculated color values for that row back to the server. These
results would then be stored, and could be viewed by either workers,
the admin, or both depending on the settings enabled by the
administrator of the project.

Data Storage
The next step in the development process was to develop a storage infrastructure.
Because MySQL isn't as accessible as folder storage, and this framework is
aimed at accessibility, a folder storage scheme was implemented. New folders are
created for each user to store the problem that they currently calculating, and the
number of data pieces calculated. A general storage folder keeps track of the data,
results, current user id, and the current piece of data being calculated. PHP
functions in the include file allow for easy access of the variables stored in these
files.

Abstract Procedure Results

Conclusions

References

Background

Siggi Simonarson
TJHSST Computer Systems Lab

Browser Based Distributed System

Copyright 2010 Siggi Simonarson

Friday, April 9, 2010

