
Converting Electronic Music to Sheet Music
TJHSST Senior Research Project Paper

Computer Systems Lab 2009-2010

Hugh Smith

April 7, 2010

Abstract

Electronic music has been steadily expand-
ing over the past years. Many file formats
have come into use, including WAVE, MP3,
Ogg Vorbix, and many others. This project
hopes to take any one of these file formats,
and, based on the pure audio wavelength
data (what the computer must see to play
the song), convert it to a sheet music ver-
sion. Keywords: music, analysis, mp3, wav,
sheet, music

1 Introduction

Problem Statement and Purpose This project
will involve reading the audio data from an
electronic audio file and converting it into a
file format called ABC. The ABC format will
be discussed in more detail later in the pa-
per. This process will be difficult because
converting music files to basic sound data can
be very complicated, especially in the case of
MP3 and other ”compressed” formats.

2 Background

I need to have a good understanding of how
C++ works. Also, I need to know musi-
cal composition, and how virtual music files
are put together. The reason for knowing
these things is so I can perform the opera-
tions stated above in the fastest time. With
bigger music files, the analysis portion of this
project could take a long time, so I need to
be able to optimize the process. I know some
previous research has been done in this area,
by some TJ students and other researchers.

3 ABC Format

ABC notation is a way to represent sheet
music in a text file. The format is simple,
with the letters of the keyboard serving
as the notes of the piano. You can add
information such as the title, the arranger,
the performer, and other things to the music.
In addition, there are lots of programs
available for converting this notation to a

1



PDF document, so it can be actual sheet
music. ABC notation is best for rendering
single-melody songs, so it will be very useful
for my project. The general format of an
ABC file is as the following example:

This creates a sheet music file like so:

ABC format is a well-used format, with many
websites offering versions of their MIDI or
MP3 files in ABC format as well. An exam-
ple is The Session (http://thesession.org/).
This website is a collection of Irish tradi-
tional folk music. This is useful, because,
most folk music has one melody, and a single
line at a time. For my project, these types of
songs will be best to test my program on, as
there is a low probability of getting the song
wrong if the program is actually working.

4 Description

So far, I have a working program that reads
in a .WAV file and prints out information
gleaned from the information chunks of the
file. It also saves the file, in chunk form, to a
buffer, and then writes it out to a copy of the
file, just to show that it can, and the struc-
ture of a .WAV file can be easily imitated.
The structure of a .WAV file is pretty simple;
it consists of three main sections, and each
has a number of chunks contained within it.
The chunks contain information such as the
type of file it is, the bitrate, the sample size,
the number of channels (mono, stereo, etc.).
These are used by music players, mostly. It
also contains information about the type of
compression the file uses; if there is one, some
extra chunks are added to tell more about it.
This will probably be one of the hardest parts
to complete, as I need to be able to convert
from the compresion into actual data. This
program is still useful in the second quarter
of my project, because I will need to con-
vert the files to audio data. I have done some
more research on this, from my main research
book ”Elements of Computer Music,” by F.
Richard Moore.

5 Elements of Computer

Music

All waves are defined by two things: fre-
quency and amplitude. Basic physics tells us
the dynamics of these waves. Sound waves
are exactly the same. They travel fast, al-
beit slower than light, and through most

2



non-vacuum mediums. Computer sound files
work the same way, in fact. Energy is con-
verted into data by the use of a transducer.
An analog signal is then sent out, which the
computer can interpret into sound.

6 Sound Waves

All sound waves can be expressed as the sum
of many waves. Many, in this case, really does
mean a lot of waves - think of how many dif-
ferent waves it takes to express a short sample
of a human talking. Music expressed in sound
waves can be even more complex. Electroni-
cally generated music is easier to deal with in
this regard, because you do not have to deal
with random fluctuations in tone or volume
based on instrument or player error. Now,
dealing with an uncompressed .WAV file, the
file has to store the information about the
sound wave in numerical form. Deciphering
this takes some work. However, it is possible
with something called the Fourier Transform.

7 Fourier Transform

The Fourier Transform is a way to separate
a complex waveform into many different sine
or cosine waves. It is a complex algorithm,
and as I had not learned it in any of my
math classes so far, I had to learn it on my
own. The formal formula is as follows:

As you can see, it is rather complex. I have
tried to convert this into code, and with a
little help with a website, I believe it works.
However, there is one major problem with my
project.

8 The Problem

And that is that it is extremely, extremely
slow-running. The problem is in the sam-
ple size in the .WAV file. For the Fourier
Transform to work accurately, it has to ana-
lyze each of the ”sample points” in the file.
For the five-second .WAV clip that I am using
to test the program, the program has to do
approximately 10+ billion calculations. Ob-
viously, this does not work out very well. On
my jacked-up computer at home, it takes at
least forty minutes to run. I don’t even want
to think about how long it would take on a
single syslab computer at school. This is the
major problem with my project - that it sim-
ply does not finish running in time.

9 The Solution

I have come up with a solution, though, and
that is to use MPI to make the process much
faster. Since I am taking parallel Computing
in parallel with the research lab, it will be
relatively easy to incorporate the theories I
have learned in that class into this one. Al-
though it is not working yet (mostly because
of the differences between C and C++ im-
plementation of MPI), once I get it working,
the program should be running at normal-ish

3



speeds.

10 Conclusion

I have progressed much on my project since
last quarter. I have a clear idea for my
project, and I have almost implemented it
all. I have a working Fourier Transform pro-
gram working, that analyzes the raw data in
a .WAV file and eventually produces an ar-
ray of numbers that defines the amplitudes
and frequencies of the many waves evident
in the file. The two things I have left to do
is add code to convert the pitch values into
notes, and implement MPI to make the pro-
gram faster.

11 Bibliography

http://www.sonicspot.com/guide/wavefiles.html
https://ccrma.stanford.edu/courses/422/projects/WaveFormat/
http://thesession.org/ Elements of
Computer Music (F. Richard Moore)
http://www.dspdimension.com/admin/dft-
a-pied/

4


