An Analysis of Dynamic Applications of Black-Scholes

Aileen Wang Period 5 Computer Systems Research

- A For decades people have invested in the stock
- b market in with stocks, options, and bonds. One of
- S the earliest is Black-Scholes. Developed by
- ⁵ Fischer Black and Merton Scholes
- t in 1973, it remains one of the most prevalent tools
- r used by European investors today. The major
- ¹ focus of study will be comparing call and put
- a values generated by the Black-Scholes model to
- C historical call and put values.

t

Figure 2: Main formulas of Black-Scholes

$$C(S,t) = SN(d_1) - Ke^{-r(T-t)}N(d_2)$$

$$d_1 = \frac{\ln(\frac{S}{K}) + (r + \frac{\sigma^2}{2})(T-t)}{\sigma\sqrt{T-t}}$$

$$d_2 = d_1 - \sigma\sqrt{T-t}.$$

 $P(S,t) = Ke^{-r(T-t)} - S + (SN(d_1) - Ke^{-r(T-t)}N(d_2)) = Ke^{-r(T-t)} - S + C(S,t)$

F Although in the future many more companies will be analyzed, i Apple (NASDAQ: AAPL) was used as a preliminary subject for n analysis. At a given time t, the stock price for AAPL was d \$239.94. APPL options used are ranged from \$90.00 to \$190.00 i in increasing increments of \$5.00. All options were n calculated with three days until maturity, volatility of 20%, and a g risk free rate of 0.35%. S

Obtacet als - Opend Hice ang Calc										
Ele	Edit View In	sert Format	Tools Data Wind	low <u>H</u> elp						
	·		N # # !*	5 🖦 🗴 G	b m - 3	5 (👆 🗉 🗠	- I 📾 🏊 🗄	S. 🖌 🖉 🖪	× 192 🛧	No.
~										
16	Verdana		v 10 v 🌽	AA	S E P	1000 1000	**	417 1417	FR • 🔳	*
(J3		~ fee 2	E = = C3+EXP	(-E3*D3)*NORMS	DIST(+H3]-81	#NORMSDIST[-0	53)			
-	8	C	D	E	F	6	н	1		ĸ
1	Stock price	Strike Price	Time to Maturity	Risk free rate	volatility	Equation d1	Equation d2	Call value	Put value	
2	5	х	т	r	v	d1	d2			
	196.97	196.97	0.06	0.35%	40.0%	0.0501	-0.8459	7.5555	7.5159	1
-4	195.23	196.23	0.85	0.35%	40.0%	0.0489	-0.8448	7.3455	7.3078	T
5	196.48	196.48	0.05	0.35%	40.0%	0.0476	-0.0436	7.1683	7.1325	
6	193.32	193.32	0.05	0.35%	40.0%	0.0464	-0.0425	0.8646	6.0312	
7	188.95	188.95	0.05	0.35%	40.0%	0.0451	-0.0413	6.5201	6.4893	
8	189.87	189.87	0.04	0.35%	40.0%	0.0437	-0.0400	6.3559	6.3268	
9	197.8	197.8	0.04	0.35%	40.0%	0.0423	-0.0388	6.4108	6.3823	
10	196.43	196.43	0.04	0.35%	40.096	0.0409	-0.0375	6.1502	6.1238	
11	194.67	194.67	0.84	0.35%	40.0%	0.0394	-0.0361	5.8730	5.8488	
12	196.98	196.98	0.03	0.35%	40.0%	0.0379	-0.0347	5.7093	5.6866	
13	194.17	194.17	0.03	0.35%	40.0%	0.0362	-0.8332	5.3879	5.3674	
14	195.03	195.03	0.03	0.35%	40.0%	0.0346	-0.0317	5.1596	5.1409	
15	191.86	191.86	0.02	0.35%	40.0%	0.0328	-0.0300	4.8149	4.7983	
16	195.43	195.43	0.02	0.35%	40.0%	0.0309	-0.0283	4.6236	4.6087	
17	198.23	198.23	0.02	0.35%	40.0%	0.0289	-0.0265	4.3866	4.3733	
18	200.36	200.36	0.02	0.35%	40.0%	0.0268	-0.0245	4.1045	4.0930	
19	202.1	202.1	0.01	0.35%	40.0%	0.0244	-0.0224	3.7790	3.7694	
20	209.04	209.04	0.01	0.35%	40.0%	0.0219	-0.0200	3.4958	3.4877	
21	211.61	211.61	0.01	0.35%	40.0%	0.0189	-0.0173	3.0642	3.0581	
22	209.1	209.1	0.01	0.35%	40.096	0.0155	-0.0142	2.4719	2.4679	
23	211.64	211.64	0.00	0.35%	40.0%	0.0109	-0.0100	1.7687	1.7667	
24										
		(Sheet2 / She	iat3/	<				•		
Shee	67/3	PageStyle	Sheet1	STD		Sum-	7.5159	· · · ·	•	. (1) 1009

Figure 1: The Black-Scholes Spreadsheet

Μ The Black-Scholes involves several main variables: stock price, strike price, volatility, time until maturity, O and the risk-free interest rate. We assume that the valuation of options follows a Geometric Brownian d motionand the return is normally distributed with no limits on shorting, no arbitrage, no dividends, and no e transaction costs or taxes. The volatility is calculated 1 through a logarithmic function from historical data; the risk free rate is estimated by the U.S. T-bond rate. 1 The generated values are then compared with actual values. n

> 12 10 8 6 6 6 6 6 7 9 Put value Put value Put value Put actual 0 80 130 180 230

g