
TJHSST Computer Systems Lab Senior
Research Project

Design of a Simple Real Time Strategy Game
with a genetic AI

2009-2010

Bharat Ponnaluri

October 30, 2009

1 Abstract

Currently, the AI for strategy games involves combinations of heuristics and
constants that need to be optimized for heuristic evaluation function to work
efficiently. The problem is that there are a large number of constants and
combinations of heuristics to optimize, a heuristic evaluation function may
return suboptimal functions. For example, chess computers operate by evalu-
ating heuristics based on things such as material, and position, which can be
composed of many variables such as the moves available, and where pieces
are. I plan to design a simple real-time strategy game and use a genetic
algorithm to create the AI. Genetic algorithms can produce constants and
combinations of heuristic algorithms that are optimized relatively quickly
and accurately. They operate in a manner similar to evolution by eliminat-
ing suboptimal combinations of heuristics and constants, and swap the data
of the surviving combinations.

Keywords: Genetic Algorithm, Real-Time strategy, heuristic evaluation
function, machine learning

2 Introduction

Currently, heuristics are an important part of the artificial intelligence for
computer games. Heuristic algorithms are a programming technique for ar-

1



riving at an approximately optimal solution by deciding on a solution using
heuristic evaluation functions. They are helpful because computers do not
have sufficient computing power to arrive at an optimal solution in many
cases. For example, in chess, the ability to look forward more than a few
moves is a useful skill. A pure brute force approach does not work, because
the chess games usually take several dozen moves to finish. Basically, this
means that the computer would have to increase the number of searched
exponentially as the depth increases. As a result, effective chess computers
must reduce the size of their search tree using methods such as minimax and
alpha-beta pruning and then use heuristic evaluation functions to eliminate
suboptimal positions and clearly suboptimal moves. A genetic algorithm can
be used to help methods such as minimax reduce the size of a search tree

The same idea applies to other strategy games, since computers do not
have the ability to look ahead too far using a brute force approach. In order
for heuristic evaluation functions to give effective results, the function needs
to have an optimal combination of constants and functions. With more than
several constants and possible combinations of functions, trying to optimize
the combination of functions and constants becomes increasingly difficult.
Genetic algorithms will make it easier to optimize large numbers of function
combinations and constants and function without user input

3 Scope of Study

The objetive will be to create an AI that is intelligent enough to beat
someone who is a hardcore fan of my game without using cheats or overly
using the fact that it has a faster reaction time than a human. It should
be able to beat a skilled human player by making intelligent decisions and
being able to exploit the behaviour of human players to its advantage. At
the same time, I should easily be able to modify the AI so that beginners
can win against it. The algorithm should be somewhat generic, so it will be
possible for me to extend this algorithm to a different game. In this paper,
I will discuss genetic algorithms and why they are useful. Then I will talk
about a real time strategy game I am designing to test my genetic algorithm

4 Background

Genetic algorithms have not been used significantly in computer science and
have not really been used in games. However, genetic algorithms have been
used to solve several problems which would be difficult to solve using a brute

2



force approach
In one tutorial, the author discusses the use of genetic algorithms for

determining a mathematical equations using the numbers 1 to 9 and the
operators -,+,*,/ to obtain a an equation that is a certain length that would
produce a certain number. If the number is a number that has two factors less
than ten such as 24, 42, 32, etc, the problem is relatively easy for a computer
to solve. However, a number such as 83 is a prime number and it would be
difficult for the computer to determine using a brute force approach. The
fitness function is simply 1/(targetNumber-number that equation generates).
As a result, suboptimal combinations of numbers and operators can quickly
be eliminated, and the algorithm works from combinations that are close to
the answer, which makes the algorithm quickly converge on a good answer.
This could be a good idea for my game because instead of using the numbers
1 through 9, the operators would operate on the constants and heuristic
evaluation functions.

Even when a person does not know what the answer is, a genetic algo-
rithm can work effectively. For example, another problem involves a bunch
of large disks in a bounded area, and trying to place the largest possible disk
within the bounded area. Although a human can find the approximate solu-
tion for a combination of disks, finding the exact solution is difficult. A brute
force approach would be inefficient, especially if there are a large number of
pixels in the area. However, a genetic algorithm is able to solve it relatively
easily.Another genetic algorithm inolves creating a genetic algorithm to play
the snake game. The AI snake is intelligent and is capable of competing with
a experienced human. Although programming skill was required to code it,
the programmer did not need to be skilled at playing snake.

Another research project involves using a genetic algorithm to optimize
the constants for a heuristic evaluation function that is supposed to find
the shortest possible degree-constrained spanning tree. A degree-constrained
spanning tree is a tree structure that contains all the vertices on a graph as
nodes with the limitation that each node cannot be connected to more than a
certain number of nodes. The shortest possible degree-constrained spanning
tree occurs when the total distance of all the links between nodes. The
conclusion for this project is that genetic algorithms can find shorter degree
constrained spanning trees than traditional heuristics, even with heuristics
intended to mislead a genetic algorithm. As a result of the success of a
genetic algorithm to create a degree constrained spanning tree, the conclusion
supports the use of genetic algorithms in other areas for other combinatorial
problems, especially constrained ones.

The AIs that I am creating have personality traits, which are numbers.
The personality traits are behaviors such as an AIs tendency to spend money,

3



attack other players, or take revenge on other people. Certain combinations
work well and some dont. For example, an aggressive AI which saves a lot
of money is not going to be very effective.

5 Development

5.1 DesignCriteria

The AI that I create should have the skill level of someone who is a hardcore
fan of my game and has been playing it for a long time and be capable of
diplomatic interaction with humans and the ability to mimic human emo-
tions. However, the main focus will be on making the AI play intelligently.
Also, it should be fun for players of all skill levels to play my AI, which I will
test out by getting random people to play against the AI I created. The AI
that I create should have the skill level of someone who is a hardcore fan of
my game and has been playing it for a long time and be capable of diplomatic
interaction with humans and the ability to mimic human emotions. To test
this out, I will set up a game. Also, it should be fun for players of all skill
levels to play my AI, which I will test out by getting random people to play
against the AI I created. Also, I hope to make the AI algorithm as generic
as possible, so it can be applied to other strategy games.

For the second quarter, I will improve the heuristic evaluation func-
tions for my AI code. For my genetic algorithm during the 3rd quarter, the
chromosomes for each AI will be composed of mathematical operators, con-
stants, math functions, and the heurstic evaluation functions I am writing.
The heuristic functions will be the basic building blocks of the chromosomes,
and a certain AI chromosome may not use a certain chromosome. As a re-
sult, during 2nd quarter, I will focus on writing basic heuristic evaluation
functions. Then I will put together a combination of those functions for the
AI

5.2 Timeline

• 2nd quarter

– 11-2 to 11-6

– Rest of November

– December

– January

4



• 3rd quarter

– February-Write genetic algorithm

– March-Run genetic algorithm

– March-While genetic algorithm is running, polish the rest of the
game

– April-Test out genetic algoritm against AI I coded 2nd quarter to
see if it is more intelligent

• 4th quarter

– Find another strategy game and design a genetic AI for it

5.3 Genetic Algorithms

The main advantage of a genetic algorithm is that it is capable of arriving at
an optimal solution in a relatively short time without user input, even if there
are many constants and function combinations that need to be optimized. A
genetic algorithm works by randomly determining a set of parameters and
function combinations that are represented in chromosones. An algorithm
is run once for each chromosome based on the data in the chromosome.
Afterwards, based on the chromosome’s performance during the algorithm, a
fitness score is calculated for the chromosome. Then the chromosomes with
the lower scores are eliminated. Then the chromosomes randomly mutate
and have a small portion of their data randomly modified. Then the suriving
chromosomes ”mate” and swap data, then the algorithim runs again. Genetic
algorithms have a tendency to have their chromosomes converge on locally
optimal places. For my algorithm this will be a good thing is long as the
local optima are not too far from the optima. This is because I would like a
diverse set of AI’s because they would have different personalities and make
the game more exciting. Here, we propose the use of a genetic algorithm to
optimize the heuristic evaluation functions for the AI of a strategy game.

6 Results

I then decided to test out the current AI algorithm to see how fast it runs.
The heuristic algorithm I currently use for the AI will be useful with the
improved AI I created. The algorithm depends mostly on the number of cities
on the map and the size of the squares used to store the troops. The speed of
the algorithm does not mainly count on the number of troop presents. It runs

5



once every .266666 seconds, which means that the speed of this algorithm is
a significant issue. Making the AI algorithm run less often and staggering
each of the AI methods would give a significant performance boost while not
significantly affecting the intelligence of the AI

Number of Troops on Map Time Taken in Seconds for AI algorithm
9 0.14
1024 0.16
2000 0.2
5000 0.2
6822 0.3

I then tested the graphics and rendering part of my game, which is where
I think the speed issue is the most significant. It runs once every 0.0655737
seconds so it runs 15 times per second. I do not want to make the graphics
algorithm run less often or the frame rate will be too low. Even with a low
number of troops on the map, the graphics algorithm takes too much time,
especially since the graphics and the AI algorithms do not run in parallel. As
the number of troops approaches 1000, the graphics algorithm starts taking
more time than the length of a graphics frame, which is why the frame
rate is low and the why the game is unresponsive to user input after a while.
Although I could take advantage of running parts of my game in parallel using
a dual core processing, concurrent programming makes a program difficult
to debug.

Number of Troops on Map Time Taken in Seconds for graphics, Time(seconds) taken to run 15 times
10 0.05,0.75
1000 0.08,1.2
2000 0.15,2.25

In summary, my current code has significant speed issues. The new AI
algorithm I am designing will take up a significant amount of computing
power. Also, having more efficient code will make a genetic algorithm finish
faster and reduce the need for complex networking because I will be able to
run multiple instances of my game on the same processor core.

References

[1] Neville, Melvin., Sibley, Anaika.(2000). Developing a Generic genetic
algorithm.ACM,1, Retrieved from: http://portal.acm.org/

6



[2] Frayn, Colin.(2005, Aug. 5) Computer Chess Pro-
gramming Theory.Retrieved October 28, 2009
from:http://www.frayn.net/beowulf/theory.html

[3] Buckland, Matt. Genetic Algorithms in Plain English. October 21, 2009,
from ai-junkie:http://www.ai-junkie.com/ga/intro/gat1.html

[4] Ehlis, Tobin. (2000, Aug 10)Application of Genetic Pro-
gramming to the Snake Game.October 21, 2009 from
http://www.gamedev.net/reference/articles/article1175.asp

[5] Raidl, GR.,Julstrom, Bryant A. (2000). A weighted coding in a genetic
algorithm for the degree-constrained minimum spanning tree problem.
ACM,1,Retrived from

7


