
Using genetic algorithms to develop an AI for a strategy
game

Bharat Ponnaluri
Computer Systems Lab 2009-2010

Abstract

Currently, the AI for strategy games involves
combinations of heuristics and constants that need
to be optimized for heuristic evaluation function to

work efficiently. The problem is that there are a
large number of constants and combinations of

heuristics to optimize, a heuristic evaluation
function may return suboptimal functions. For

example, chess computers operate by evaluating
heuristics based on things such as material, and

position, which can be composed of many variables
such as the moves available, and where pieces are.
I plan to design a simple real-time strategy game

and use a genetic algorithm to create the AI.
Genetic algorithms can produce constants and
combinations of heuristic algorithms that are

optimized relatively quickly and accurately. They
operate in a manner similar to evolution by

eliminating suboptimal combinations of heuristics
and constants, and swap the data of the surviving

combinations.

Background and
Introduction
The main advantage of a genetic
algorithm is that it is capable of arriving
at an optimal solution in a relatively short
time without user input using the
principles of natural selection A genetic
algorithm works by randomly
determining a set of parameters and
function combinations that are
represented in chromosones. An
algorithm is run once for each
chromosome based on the data in the
chromosome and the suboptimal
chromosomes are removed. Then the
surviving chromosomes randomly
mutate and and exchange data.

Figure 1: A screenshot of the game

Discussion

Results

Number of Troops
On Map

Time Taken in
Seconds for graphics

Time(seconds) taken
to run 15 times

10 0.05 0.75

1000 0.08 1.2

2000 0.15 2.25

Number of Troops On
Map

 Time Taken in Seconds for AI algorithm

9 0.14

1024 0.16

2000 0.2

5000 0.2

6822 0.3

In summary, my current code has
significant speed issues. The new AI
algorithm I am designing will take up a
significant amount of computing power.
Also, having more efficient code will
make a genetic algorithm finish faster
and reduce the need for complex
networking because I will be able to run
multiple instances of my game on the
same processor core.

	Slide 1

