TJHSST Computer Systems Lab Senior
Research Project Proposal
Design of a Simple Real Time Strategy Game

with a genetic Al
2009-2010

Bharat Ponnaluri

October 30, 2009

1 Purpose

The goal of this project will be to use a simple RTS game I created and
create a genetic AIl. The genetic Al should be intelligent enough to win
against a skilled human player. I also hope to make the genetic algorithm
somewhat generic so it can be used for other games. The Al should also
be able to mimic human emotions and be capable for diplomatic interation,
otherwise playing against them would get boring.If I finish creating a genetic
AT before the end of the year, I will rewrite the Al code for another computer
game and try to apply my genetic algorithm. Currently, many computer
games involve optimizing combination of heuristic evaluation functions and
constants, and doing so is difficult and sometimes impossible. A genetic
algorithm would be able to generate an optimal combination of evaluation
functions and constants without significant user input. If enough computing
computer can be obtained to run a genetic algorithm, game developers will be
able to create more intelligent Als. This will satisfy hardcore gamers. Also,
game developers will not need to know good strategies in order to design
an intelligent Ai since the genetic algorithm will determine the strategies.
Basically, by coding a non-genetic Al, I am making an educated guess about
what the optimal Al algorithm is.



2 Scope of Study

The first portion of my project will be creating a more intelligent AI by
using better heuritstic evaluation functions and allowing the Al to be able to
respond to other player’s actions. Even if I run into problems and my code
ends up being too complex, I will still be able to create a more intelligent Al
One of my goals is to use building block functions for my genetic algorithm
that I will use later. If I run out of time, I will forget about the building block
functions. During third quarter, I will code the genetic algorithm to optimize
constants that determine Al behaviour and building block functions.

Genetic algorithms take up a signficant amount of time and computing
power, even with networking. If networking ends up being too complex, I
will make my game simply by reducing the size of the game map, remove
the graphics, and run multiple instances of my game in parallel. If coding a
genetic algorithm does not turn out to be feasible because of time or com-
puting power constraints, I will focus on machine learning for 3rd and 4th
quarters

3 Background

A genetic algorithm works by randomly determining a set of parameters and
function combinations that are represented in chromosones. An algorithm
is run once for each chromosome based on the data in the chromosome.
Afterwards, based on the chromosome’s performance during the algorithm, a
fitness score is calculated for the chromosome. Then the chromosomes with
the lower scores are eliminated. Then the chromosomes randomly mutate
and have a small portion of their data randomly modified. Then the suriving
chromosomes "mate” and swap data, then the algorithim runs again. Genetic
algorithms have a tendency to have their chromosomes converge on locally
optimal places. For my algorithm this will be a good thing is long as the
local optima are not too far from the optima. This is because I would like a
diverse set of AI’s because they would have different personalities and make
the game more exciting. Here, I propose the use of a genetic algorithm to
optimize the heuristic evaluation functions for the Al of a strategy game.
Currently, there is not a significant amount of research on the use of
genetic algorithms, but the research done so far is encouraging. Genetic al-
gorithms apply the principles of natural selection and evolution to optimize
certain parameters. These parameters are represented as a long string, which
represents a chromosone. One site attempts to use genetic algorithms to cre-
ate a mathematical equation consisting of the numbers 1-9 and /,+,* -, that



adds up to 42. Here, the chromosones would be the mathematical equation.
The algorithm then consists on a fitness score based on how close the chro-
mosone’s parameters are to a solution. In the case of a game Al, the fitness
score is calculated based on how well the Al performs in a game. Then, the
chromosones with a higher fitness score swap some of their parameters, and
the process repeats. In order to prevent the genetic algorithm from converg-
ing on a local optima instead of a global one, the chromosones occasionally
mutate like natural chromosones. Also, there is a genetic algorithm that
finds the largest possible circle that can fit between a random collection of
disks without overlap. Here, a genetic algorithm found a solution that the
human did not know.

Another area of research involves using a genetic algorithm to optimize
weights heuristics to generate the shortest possible degree spanning tree. A
degree-constrained spanning tree is a tree structure that contains all verticies
on a graph as nodes. The shortest possible degree spanning tree occurs when
the total length of the connections between verticies is minimized. A genetic
algorithm was able to find the shortest possible degree constrained spanning
tree. Based on the sucess of the genetic algorithm the researchers suggest
using genetic algorithms in other areas

3.1 Sources

e http://www.ai-junkie.com/ga/intro/gat1.html
e http://www.gamedev.net/reference/articles/article1175.asp

e http://portal.acm.org/

4 Procedure and Methodology
e 2nd quarter

— 11-2 to 11-6

— Rest of November
— December

— January

e 3rd quarter

— February-Write genetic algorithm



— March-Run genetic algorithm

— March-While genetic algorithm is running, polish the rest of the
game

— April-Test out genetic algoritm against AI I coded 2nd quarter to
see if it is more intelligent

e 4th quarter

— Find another strategy game and design a genetic Al for it

4.1 Design

To design my AI, I will be programming in Java using Eclipse. Eclipse
has an integrated debugger which I plan to use. The main game part of
my program is stable and functioning without major bugs as long as the
graphics algorithm is not taking too much time. I will not need any additional
resources except additional computers that are not being used for 3rd quarter.
Currently, the input part of my game functions and will be sufficient. The
only input data are multiple text files describing the game maps, and I already
have code to read such as text file.

4.2 Testing

My main debugging effort will be focuses on the Al algorithms. In order to
make sure that the Al algorithms are more intelligent, I will try to exploit
it using different methods such as only building troops when under attack,
turtling and blitzing the mp, or being really agressive. I will consider the
genetic algorithm intelligent if I win a free-for-all against 4 other Als less
than one times in five of the time. I will also have classmates and friends
test out my game to make sure that my Al really is more intelligent. Also, I
will text my genetic Al against the Al’s I coded 2nd quarter. Graphs will be
useful in order to display the win rates of my genetic Al against other Als
and players compared with a non-genetic Al.

5 Expected Results and Value to Others

Currently, the Al code of many strategy games is not created genetically.
By creating a genetic Al, gamers of all skill levels will enjoy games more. In
many cases, the Al algorithms of a game is basically composed of heuristic
algorithms which decided on what to do based on the current state of the



game and a set of constant values. The problem is that optimizing those
constant values can take a long time, and becomes impossible if you have
too many values. Genetic algorithms sometimes have a tendency to converge
around local optima, which is often a problem. For the AI I'm creating, this
will actually be a good thing since it ensures that all the AI's do not act in
the same way. Also, I can easily make my Al less intelligent by suboptimally
modifying my genetic Al algorithm. This will make it more fun for beginners
to play a game because a player is not handicapped. Also, the Al will be
less likely to make arbritary decisions to attack/suicide on someone, which
makes people annoyed.

The are many excellent solutions to problems such as the Travelling Sales-
man Problem that involve heuristic evalution functions and constants. If the
designers of these solutions used genetic algorithms combined with their ex-
isting solutions, they could come up with more efficient solutions. Also,
genetic algorithms would be useful to develop an intelligent Al for games
such as Go, as current Al algorithms are not very intelligent compared to
many top players



