Victor Shepardson

Latimer 3

Code Writeup 1Q


At the core of my synthesizer is an oscillator. It works not as a function of time, but as a function of a parameter p which varies from 0.0 to 1.0. This function can be any specified to be any shape; a sine wave, a square wave, a harmonic series. Different pitches are achieved by incrementing p based on a frequency function. The result is that the audio signal will be continuous (as long as the wave form is) whether or not the frequency function is. A consequence is that any voice must be monophonic; polyphony can be achieved only by using multiple voices. Multiple frequency functions can be specified per voice; they will be multiplied together to produce a single value. In this way it is possible to achieve vibrato, whammy and ring modulation effects. The output of the oscillator is multiplied by each amplitude function; this enables envelope control, tremolo, and longer term crescendos and fade outs.

Music can be input via the note matrix: note objects in a list have properties of pitch, position in time, duration, and envelope parameters. I have written frequency and amplitude functions which will build themselves based on these parameters to match the note matrix. Once a sequence of notes is programmed in, the harmonic content and envelope shape can be changed; notes can be played legato or staccato, can swell in or decay exponentially like a plucked string. Any of the previously mentioned tremolo, vibrato and ring mod effects can be applied.

At this point, user interface is in progress; some code is in place to interpret strings of the form [class][accidentals][register] (ex: C4, A#5 or Dbb3) as numeric frequencies. Currently in progress is the interpretation of note durations using a specified speed and abbreviations for note types (whole, half, quarter-quintuplet, and so forth) along with a user specified bpm and time signature for the piece. I plan to look at using MuseScore or ABC notation in my interface.

Once I get a decent interface working, I plan to work on optimization; currently my program runs pretty slowly. After that I will determine whether there are features which still need attention or if I can begin working in another area, such as computer composition or additional processing capabilities. 

Abbreviated list of functions and classes:

decint_to_ascii(dec, numbytes):


converts a decimal integer to numbytes ascii characters

def write(datastr,SR,SD,filename)


writes an uncompressed PCM wav file header with sample rate SR, sample depth SD (in bytes) 
and prints the data in datastr to filename.wav.

def normalize(data):


given a list of floats, normalizes them linearly such that the maximum absolute value of a data 
point = 1.0.

def main():


many parameters are currently specified within main; loops p and t over duration for each voice. 
Feeding of frequency functions into the oscillator and scaling by amplitude functions goes on 
here.

def pure_tone(p):


Example of a waveform; returns a sine wave with wavelength 1.0 and amplitude 1.0.

def swell_4_sec_sin(t):


Example of a multipurpose function of time: returns a value between 0.0 and 1.0 increasing 
over 4 seconds.

def unity(t):


Another multipurpose time function; used as a placeholder, always returns 1.0.

def A440(t):


Example of a frequency function; always returns 440 Hz.

def sweep_440_to_880_4_sec(t):


Another frequency function; sweeps between 440 and 880 Hz over 4 seconds.

def build_pitch_function_from_note_matrix(n_m):


Frequency function used in conjunction with a note matrix n_m.

def build_env_function_from_note_matrix(n_m):


Amplitude function used in conjunction with a note matrix n_m; builds an amplitude function to 
line up with a frequency function according to the envelope parameters in n_m.

class Note():


def __init__(self,location,duration,hold_time,envelope,frequency):

