
Developing a Music Sequencer/Synthesizer
TJHSST Senior Research Project
Computer Systems Lab 2009-2010

Victor Shepardson

October 27, 2009

Abstract

A non real-time sequencer/synthesizer is being developed in Python,
capable of producing audio signals made up of superposed periodic
functions. Smooth pitch transition, vibrato, tremolo, envelope shap-
ing, and polyphony have been implemented. The program performs
as intended so far.

Keywords: additive synthesis, sound synthesis, music sequencing

1 Introduction

As the terms are used here, a synthesizer electronically produces sound; a
sequencer allows the specification of melodic and harmonic information to
a synthesizer. Together, they can allow the production of music without
physical proficiency in an instrument, and the creation of unique sounds
unique to the synthesizer as an instrument. The goal of this project is to
produce something of creative value; the intent is not to imitate existing
instruments, but to produce something which is a versatile and intersting
instrument in itself.

2 Background

Currently the only language in use is Python. Knowledge of Python was
preexisting, as was basic knowledge of the digital representation of sound

1



and of synthesis by superposition. To date, areas of study have been sound
file formats, scientific pitch notation, and methods of synthesis. Articles
discussing granular synthesis and synthesis by cross-coupled oscillators were
examined; similar methods may be implemented at some point. An interface
to communicate with a composition program called MuseScore might also be
developed.

3 Development

At the core of the synthesizer is an oscillator. A waveform is specified as
a Python function with domain [0.0,1.0); as a time variable loops over the
total audio duration incremented according to the sample rate, a parameter
p is incremented such that it ranges from 0.0 to 1.0 over the duration of 1
cycle according to a frequency function of time. In this way, a discontinuous
frequency function will not result in a discontinuous audio signal, preventing
undesirable pops and clicks. The output from this system of frequency func-
tion and oscillator is then multiplied by an envelope function of time with
range [0,1]. The resulting value is stored as a decimal floating point value.
After the main loop terminates, the stored audio signal output is normalized,
converted to binary integers, and printed to an output file.

Features will be/are being/have been implemented as follows, and revis-
ited or expanded as necessary:

• core of synthesizer: oscillator, loop over time, amplitude frequency and
wave weighting functions; enables smooth pitch change, vibrato and
tremolo effects.

• file write: converting floating points to binary integers, writing uncom-
pressed wav file header

• core of sequencer: note class, the note matrix, build-from-matrix am-
plitude and frequency functions

• interface: implementation of musical notation, user input

• optimization: revisiting algorithms to improve speed

• additional features: varied attack, GUI/integration with MuseScore,
post-synthesis processing, computer composition, conversion to real-
time synthesis

2



4 Testing

Testing is primarily by ear; files are played to detect inconsitencies or affirm
behavior. The spectral analysis feature in Audacity has been employed to
examine noise levels. Okteta has been used to examine file headers. Speed
testing will be done using the time module in Python.

5 Results

The synthesizer is producing wav files with the intended content; smooth
pitch transitions and properly shaped envelopes are evident. Polyphony is
functioning but may still exhibit issues related to phase of voices in unison.
Noise is not excessive and seems to be properly linked to sample depth of
output files. Currently, speed lags behind real-time, and is probably nowhere
close to optimal.

6 Conclusion

The employed methods of sound synthesis are capable of producing a wide
range of subjectively interesting tones.

References

[1] Miranda, E. R., ”At the Crossroads of Evolutionary Computation and
Music: Self-Programming Synthesizers, Swarm Orchestras and the Ori-
gins of Melody”, Evolutionary Computation 12(2) pp. 137-158, 2004.

[2] Valsamakis, N. and Miranda, E. R., ”Iterative sound synthesis by means
of cross-coupled digital oscillators”, Digital Creativity 16(2), pp. 79-92,
2005.

3


