
Developing a Music Sequencer/Synthesizer
Victor Shepardson

Computer Systems Lab 2009-2010

Abstract

Background and Introduction

Discussion

Results and Conclusions

 A non real-time sequencer/ synthesizer is
being developed in Python, capable of
producing audio signals made up of
superposed periodic functions. Smooth pitch
transition, vibrato, tremolo, envelope
shaping, and polyphony have been
implemented. The program performs as
intended so far.

Fig 2: The envelope function

Fig 1: waveforms

At the core of my synthesizer is an oscillator. It
works not as a function of time, but as a function
of a parameter p which varies from 0.0 to 1.0. This
function can be any specified to be any shape; a
sine wave, a square wave, a harmonic series.
Different pitches are achieved by incrementing p
based on a frequency function. The result is that
the audio signal will be continuous (as long as the
wave form is) whether or not the frequency
function is. A consequence is that any voice must
be monophonic; polyphony can be achieved only
by using multiple voices. Multiple frequency
functions can be specified per voice; they will be
multiplied together to produce a single value. In
this way it is possible to achieve vibrato, whammy
and ring modulation effects. The output of the
oscillator is multiplied by each amplitude function;
this enables envelope control, tremolo, and longer
term crescendos and fade outs.

Music can be input via the note matrix: note
objects in a list have properties of pitch, position
in time, duration, and envelope parameters. I have
written frequency and amplitude functions which
will build themselves based on these parameters
to match the note matrix. Once a sequence of
notes is programmed in, the harmonic content and
envelope shape can be changed; notes can be
played legato or staccato, can swell in or decay
exponentially like a plucked string. Any of the
previously mentioned tremolo, vibrato and ring
mod effects can be applied.

 Currently the only language in use is Python.
Knowledge of Python was preexisting, as was
basic knowledge of the digital representation of
sound and of synthesis by superposition. To date,
areas of study have been sound file formats,
scientific pitch notation, and methods of
synthesis. Articles discussing granular synthesis
and synthesis by cross-coupled oscillators were
examined; similar methods may be implemented
at some point. An interface to communicate with
a composition program called MuseScore might
also be developed. The synthesizer is producing wav files with the

intended content; smooth pitch transitions and
properly shaped envelopes are evident. Polyphony is
functioning but may still exhibit issues related to phase
of voices in unison. Noise is not excessive and seems
to be properly linked to sample depth of output files.
Currently, speed lags behind real-time, and is probably
nowhere close to optimal.
 The employed methods of sound synthesis are
capable of producing a wide range of subjectively
interesting tones.

	Slide 1

