
Developing a Music Sequencer/Synthesizer
TJHSST Senior Research Project Proposal

Computer Systems Lab 2009-2010

Victor Shepardson

October 26, 2009

1 Introduction

As the terms are used here, a synthesizer electronically produces sound; a
sequencer allows the specification of melodic and harmonic information to
a synthesizer. Together, they can allow the production of music without
physical proficiency in an instrument, and the creation of unique sounds
unique to the synthesizer as an instrument.

2 Background

Currently the only language in use is Python; speed might necessitate the
use of C. An interface to communicate with a composition program called
MuseScore might also be developed. Knowledge of Python was preexisting,
as was basic knowledge of sound synthesis by superposition. To date, areas
of study have been sound file formats, scientific pitch notation, and methods
of synthesis. Articles discussing granular synthesis and synthesis by cross-
coupled oscillators were examined; similar methods may be implemented at
some point.

1



3 Goal

The goal of this project is to produce something of creative value; the intent
is not imitate existing instruments, but to produce a versatile and intersting
instrument in itself. To be considered sucessful, a finished program will en-
able smooth pitch change, harmonic variability, and dynamic control as well
as sequencing and input using some kind of standard notation. Expansions
to the project, time allowing, may include GUI, computer music composition,
or additional audio processing functions.

4 Procedure

Features are being implemented as follows, and revisited or expanded as
necessary:

• core of synthesizer: oscillator, loop over time, amplitude frequency and
wave weighting functions

• file write: converting floating points to binary integers, writing uncom-
pressed wav file header

• core of sequencer: note class, the note matrix, build-from-matrix am-
plitude and frequency functions

• interface: implementation of musical notation, user input

• optimization: revisiting algorithms to improve speed

• additional features: varied attack, GUI/integration with MuseScore,
post-synthesis processing, computer composition

Testing is primarily by ear; files are played to detect inconsitencies or affirm
behavior. The spectral analysis feature in Audacity has been employed to
examine noise levels.

References

[1] Miranda, E. R., ”At the Crossroads of Evolutionary Computation and
Music: Self-Programming Synthesizers, Swarm Orchestras and the Ori-
gins of Melody”, Evolutionary Computation 12(2) pp. 137-158, 2004.

2



[2] Valsamakis, N. and Miranda, E. R., ”Iterative sound synthesis by means
of cross-coupled digital oscillators”, Digital Creativity 16(2), pp. 79-92,
2005.

3


