

A FLEXIBLE AND EXPANDABLE ARCHITECTURE

FOR COMPUTER GAMES

by

Jeff Plummer

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree of

Master of Science

ARIZONA STATE UNIVERSITY

December 2004

A FLEXIBLE AND EXPANDABLE ARCHITECTURE

FOR COMPUTER GAMES

by

Jeff Plummer

has been approved

November 2004

APPROVED:

 , Chair

Supervisory Committee

 ACCEPTED:

 Department Chair

Dean, Division of Graduate Studies

ABSTRACT

Computer games have grown considerably in scale and complexity since their

humble beginnings in the 1960s. Modern day computer games have reached incredible

levels of realism, especially in areas like graphics, physical simulation, and artificial

intelligence. However, despite significant advances in software engineering, the

development of computer games generally does not employ state-of-the-art software

engineering practices and tools.

This thesis describes an architecture for computer games as a System of Systems

where the computer game itself is emergent. The proposed architecture follows a data

centered framework where the independent components collaborate on a central data

store. The architecture offers capabilities that are essential in overcoming challenges

faced in building computer games that can enjoy modifiability, expandability, and

maintainability traits. The architecture promotes component-based development (e.g.,

commercial off the shelf components) since the collaborating components have loose

couplings, which in turn facilitates systematic design integration of System of Systems.

iii

TABLE OF CONTENTS

 Page

LIST OF FIGURES ... xxiii

CHAPTER

1 INTRODUCTION .. 1

1.1 Motivation... 1

1.1.1 The current Approach and Its Shortcomings .. 1

1.1.2 The Migration to COTS.. 4

1.1.3 Not a Game Engine... 5

1.2 High Level Objectives and Goals ... 6

1.2.1 Architectural Requirement: Support COTS-Based Development 7

1.2.2 Architectural Requirement: Better Knowledge Localization 7

1.2.3 Architectural Requirement: Flexibility / Modifiability............................... 8

1.2.4 Architectural Requirement: Expandability / Maintainability 9

1.2.5 Performance and Other Quality Attributes are NOT requirements 9

1.3 Contributions .. 10

2 LITERATURE REVIEW ... 11

2.1 Current State of Game Development in Literature... 11

2.2 The Latest Book Trends in Game Development .. 13

2.3 The First and Only Real Attempt at Game Architecture 14

iv

CHAPTER Page

v

2.4 Software Architecture ... 15

3 THESIS METHODOLOGY... 17

3.1 Analysis of Games as Software Systems.. 18

3.1.1 Selecting Games to Analyze ... 18

3.1.1.1 Existing Game Genres .. 19

3.1.1.2 Further Refinement – Isolate Important Properties 21

3.1.2 The Selected Games for Analysis ... 23

3.1.3 Analyzing the Games.. 27

3.1.3.1 Analyzing Starcraft™ Requirements with Use-Cases.......................... 27

3.1.3.2 Understanding the Sub-System Interaction .. 30

3.2 Identify Candidate Architectural Styles.. 32

3.2.1 Layered ... 32

3.2.2 Data-Centered ... 32

3.2.3 Independent Components.. 33

3.2.4 Data Flow.. 33

3.2.5 System of Systems .. 33

3.3 Architecture Design .. 34

3.3.1 Choosing a Topology.. 34

3.3.1.1 Layered Architectural Style .. 35

3.3.1.2 Data Flow Architectural Style .. 36

3.3.1.3 Data Centered Architectural Style .. 38

3.3.1.4 Independent Components Architectural Style 40

CHAPTER Page

vi

3.3.1.5 System of Systems .. 42

3.3.2 Making the Topology Choice ... 43

3.3.3 Choosing a Style of Communication .. 45

3.3.3.1 Repository... 45

3.3.3.2 Blackboard .. 46

3.3.3.3 Making the Communications Choice ... 47

3.3.4 Synchronicity .. 47

3.3.4.1 Synchrous at the Object Level .. 47

3.3.4.2 Batch Synchronization.. 48

3.3.4.3 Hybrid Synchronization.. 48

3.3.4.4 Making the Synchronicity Choice .. 48

3.4 The Idea – System of Systems Philosophy... 49

4 THE PROPOSED ARCHITECTURE (and a Simple Design) 50

4.1 The Data-Centered System of Systems Topology.. 50

4.2 Architecture – System Communication.. 53

4.3 Architecture – Synchronization .. 54

4.4 Architecture – Distributed Synchronization ... 55

4.5 Architectural Features / Architectural Requirements 58

4.5.1 Support for COTS-Based Development ... 58

4.5.2 Better Knowledge Localization .. 58

4.5.3 System Flexibility / Modifiability... 58

CHAPTER Page

vii

4.5.4 System Expandability / Maintainability.. 59

4.6 A Simple Design... 60

4.6.1 Potential Design: System Communication / Interaction........................... 60

4.6.2 Potential Design Cont.: Attaching Systems at Compile Time................. 61

4.6.3 Potential Design Cont.: System Communication..................................... 63

4.6.4 Potential Design Cont.: Observer Pattern to Achieve Localization of

Domain Knowledge .. 65

5 ARCHITECTURE VALIDATION .. 68

5.1 Taking the Reference Games to the Design Level ... 68

5.1.1 Applying the Design ... 68

5.1.2 Evaluating the results of applying the design ... 73

5.2 Developing a Prototype .. 74

5.2.1 Prototype High Level Design.. 74

5.2.1.1 Component Selection.. 74

5.2.1.2 The Object Data .. 76

5.2.2 Prototype Detailed Design .. 77

5.2.2.1 Component Interfaces ... 78

5.2.2.2 Domain-specific System – Object System Interactions........................ 81

5.2.2.2.1 Connecting Domain System to the Object System......................... 81

5.2.2.2.2 “Ticking” the Domain-specific System .. 82

5.2.3 Prototype Evaluation... 83

CHAPTER Page

viii

6 RESULTS ... 85

6.1 Summary... 85

6.2 Conclusions – Meeting The Architectural Requirements................................. 86

6.2.1 Support COTS-Based Development... 87

6.2.2 Better Knowledge Localization .. 87

6.2.3 Flexibility / Modifiability ... 88

6.2.4 Expandability / Maintainability .. 88

6.2.5 The Performance Concern .. 89

6.3 Important Considerations.. 90

6.3.1 Design is Critical... 90

6.3.2 Central Object Management System = VERY different........................... 91

6.3.3 Think about the Data... 92

6.4 Future Research .. 93

6.4.1 Can this Architecture Work for Massively Multiplayer Online Games ... 93

6.4.2 Design: Domain-specific Component Connection to the Object

Management Component .. 93

6.4.3 Design: No More Interfaces to Access Object Data (If performance

allows) 94

6.4.4 Architecture Inside the Components... 94

6.4.5 What is messaging overhead for independent component style 94

6.4.6 The Architectural Tradeoff Analysis Method……………………………95

CHAPTER Page

ix

Works Cited .. 96

APPENDIX Page

x

APPENDIX A - GAME ANALYSES.. 99

A - 1.1 Game Analysis .. 107

A - 1.1.1 Game Analysis - Use Case and Dynamic View 107

A - 1.1.1.1.1.1.1.1.1 Player .. 107

A - 1.1.1.1.1.1.1.1.2 System... 107

A - 1.1.1.1.1.1.1.1.3 System (Ticked).. 108

A - 1.1.1.2 Modules ... 109

A - 1.1.1.2.1 Game Data .. 110

A - 1.1.1.2.2 Game Logic .. 110

A - 1.1.1.2.3 Technology Modules .. 110

A - 1.1.1.2.3.1 AI ... 110

A - 1.1.1.2.3.2 Audio ... 110

A - 1.1.1.2.3.3 Graphics ... 110

A - 1.1.1.2.3.4 Network ... 110

A - 1.1.1.2.3.5 Physics ... 110

A - 1.1.1.2.3.6 User Interface... 110

A - 1.1.1.3 Starcraft.. 111

A - 1.1.1.3.1 Use Cases.. 111

A - 1.1.1.3.1.1 Startup.. 112

A - 1.1.1.3.1.1.1.1.1 Select Multi-Player Game........................... 112

A - 1.1.1.3.1.1.1.1.2 Select Single Player Game.......................... 112

A - 1.1.1.3.1.2 Options Menu .. 114

A - 1.1.1.3.1.2.1.1.1 End Mission .. 114

APPENDIX Page

xi

A - 1.1.1.3.1.2.1.1.2 Get Help.. 115

A - 1.1.1.3.1.2.1.1.3 Get Mission Objective 115

A - 1.1.1.3.1.2.1.1.4 Load Game.. 115

A - 1.1.1.3.1.2.1.1.5 Modify Options... 115

A - 1.1.1.3.1.2.1.1.6 Return To Game ... 115

A - 1.1.1.3.1.2.1.1.7 Save Game .. 116

A - 1.1.1.3.1.3 Play Starcraft ... 117

A - 1.1.1.3.1.3.1.1.1 Attack Unit.. 117

A - 1.1.1.3.1.3.1.1.2 Change Map Display Area.......................... 123

A - 1.1.1.3.1.3.1.1.3 Gather Resources .. 126

A - 1.1.1.3.1.3.1.1.4 Give unit an order 132

A - 1.1.1.3.1.3.1.1.5 Move to Location.. 137

A - 1.1.1.3.1.3.1.1.6 Research Technology.................................. 142

A - 1.1.1.3.1.3.1.1.7 Select Object ... 145

A - 1.1.1.3.1.3.1.1.8 Building construct Unit............................... 150

A - 1.1.1.3.1.3.1.1.9 Give Building an order 150

A - 1.1.1.3.1.3.1.1.10 Hold Position .. 150

A - 1.1.1.3.1.3.1.1.11 Manipulate Object Resources 151

A - 1.1.1.3.1.3.1.1.12 Manipulate Player Resources 151

A - 1.1.1.3.1.3.1.1.13 Modify Doable Commands....................... 151

A - 1.1.1.3.1.3.1.1.14 Patrol Location.. 151

A - 1.1.1.3.1.3.1.1.15 Stop Movement... 151

A - 1.1.1.3.1.3.1.1.16 Unit Construct Building............................ 151

APPENDIX Page

xii

A - 1.1.1.3.1.4 Design: Tick Starcraft System... 153

A - 1.1.1.3.1.4.1.1.1 Tick Starcraft Game System....................... 154

A - 1.1.1.3.1.4.2 Tick AI System... 155

A - 1.1.1.3.1.4.2.1.1 Tick AI System ... 155

A - 1.1.1.3.1.4.2.1.2 Navigate Map - Pathfinding........................ 157

A - 1.1.1.3.1.4.2.1.3 Attack.. 158

A - 1.1.1.3.1.4.2.1.4 Calculate AI State 158

A - 1.1.1.3.1.4.2.1.5 Calculate Next Movement 159

A - 1.1.1.3.1.4.2.1.6 Calculate unit action 159

A - 1.1.1.3.1.4.2.1.7 Execute Map Watcher................................. 159

A - 1.1.1.3.1.4.3 Tick Audio System ... 161

A - 1.1.1.3.1.4.3.1.1 Tick Audio System 161

A - 1.1.1.3.1.4.4 Tick Graphics System... 164

A - 1.1.1.3.1.4.4.1.1 :IGraphicsObjectSystem 164

A - 1.1.1.3.1.4.4.1.2 Update View Object 164

A - 1.1.1.3.1.4.4.1.3 Tick Graphics System................................. 166

A - 1.1.1.3.1.4.4.1.4 Update View ... 166

A - 1.1.1.3.1.4.4.1.5 Update Main View...................................... 171

A - 1.1.1.3.1.4.4.1.6 Draw Main View Objects 171

A - 1.1.1.3.1.4.4.1.7 Draw Main View Terrain............................ 171

A - 1.1.1.3.1.4.4.1.8 Update All Views 171

A - 1.1.1.3.1.4.4.1.9 Update Command Button View.................. 171

A - 1.1.1.3.1.4.4.1.10 Update Mini Map View 172

APPENDIX Page

xiii

A - 1.1.1.3.1.4.4.1.11 Update Protrait View 172

A - 1.1.1.3.1.4.4.1.12 Update Status View 172

A - 1.1.1.3.1.4.5 Tick Network Component .. 173

A - 1.1.1.3.1.4.5.1.1 Broadcast local objects TO server 173

A - 1.1.1.3.1.4.5.1.2 Tick Network System 173

A - 1.1.1.3.1.4.5.1.3 Update objects FROM server 175

A - 1.1.1.3.1.4.6 Tick Object Component.. 176

A - 1.1.1.3.1.4.6.1.1 Tick Object System / Game Logic.............. 176

A - 1.1.1.3.1.4.6.1.2 Update Commander Object 178

A - 1.1.1.3.1.4.6.1.3 Update Controlled Object 178

A - 1.1.1.3.1.4.7 Tick UI Component .. 179

A - 1.1.1.3.1.4.7.1.1 Process Keyboard 179

A - 1.1.1.3.1.4.7.1.2 Process Mouse .. 179

A - 1.1.1.3.1.4.7.1.3 Tick User Interface 179

A - 1.1.1.4 Unreal Tournament.. 182

A - 1.1.1.4.1 Use Cases.. 182

A - 1.1.1.4.1.1 Play Unreal Tournament.. 183

A - 1.1.1.4.1.1.1.1.1 Collect Ammo... 183

A - 1.1.1.4.1.1.1.1.2 Collect Health ... 183

A - 1.1.1.4.1.1.1.1.3 Collect Item .. 183

A - 1.1.1.4.1.1.1.1.4 Collect Weapon .. 185

A - 1.1.1.4.1.1.1.1.5 Jump.. 185

A - 1.1.1.4.1.1.1.1.6 Move ... 185

APPENDIX Page

xiv

A - 1.1.1.4.1.1.1.1.7 Rotate .. 187

A - 1.1.1.4.1.1.1.1.8 Shoot ... 187

A - 1.1.1.4.1.2 Design: Tick... 188

A - 1.1.1.4.1.2.1.1.1 System (Ticked).. 188

A - 1.1.1.4.1.2.1.1.2 Tick Physics Component 189

A - 1.1.1.4.1.2.1.1.3 Tick AI System ... 189

A - 1.1.1.4.1.2.1.1.4 Tick Audio Component 189

A - 1.1.1.4.1.2.1.1.5 Tick Graphics 3D Component 189

A - 1.1.1.4.1.2.1.1.6 Note... 189

A - 1.1.1.4.1.2.1.1.7 Tick Network Component 190

A - 1.1.1.4.1.2.1.1.8 Tick Unreal Tournament Game System 190

A - 1.1.1.4.1.2.2 Tick AI System... 191

A - 1.1.1.4.1.2.2.1.1 Tick Unreal Tournament Game System 191

A - 1.1.1.4.1.2.2.1.2 System (Ticked).. 191

A - 1.1.1.4.1.2.2.1.3 Note... 191

A - 1.1.1.4.1.2.2.1.4 Tick AI System ... 191

A - 1.1.1.4.1.2.2.1.5 Tick Player.. 193

A - 1.1.1.4.1.2.2.1.6 Tick Projectile... 193

A - 1.1.1.4.1.2.3 Tick Audio Component .. 194

A - 1.1.1.4.1.2.3.1.1 Tick Audio Component 194

A - 1.1.1.4.1.2.4 Tick Graphics 3D Component 196

A - 1.1.1.4.1.2.4.1.1 Tick Graphics 3D Component 196

A - 1.1.1.4.1.2.4.1.2 Update All Graphical Views....................... 198

APPENDIX Page

xv

A - 1.1.1.4.1.2.4.1.3 Update Character Status Overlay................ 198

A - 1.1.1.4.1.2.4.1.4 Update GUI Overlays 198

A - 1.1.1.4.1.2.4.1.5 Update Main Play View.............................. 198

A - 1.1.1.4.1.2.4.1.6 Update Team Score Overlay....................... 200

A - 1.1.1.4.1.2.4.1.7 Update Weapon/Ammo Overlay 200

A - 1.1.1.4.1.2.5 Tick Network Component .. 201

A - 1.1.1.4.1.2.5.1.1 Broadcast Local Objects TO Server 201

A - 1.1.1.4.1.2.5.1.2 Tick Network Component 201

A - 1.1.1.4.1.2.5.1.3 Update Local Objects FROM Server.......... 203

A - 1.1.1.4.1.2.6 Tick Object Component.. 204

A - 1.1.1.4.1.2.6.1.1 Tick Object Component.............................. 204

A - 1.1.1.4.1.2.7 Tick Physics Component .. 207

A - 1.1.1.4.1.2.7.1.1 Calculate Collision Reaction 207

A - 1.1.1.4.1.2.7.1.2 Detect Collisions... 207

A - 1.1.1.4.1.2.7.1.3 Tick Physics Component 207

APPENDIX B – PROTOTYPE DESIGN .. 210

B - 1.2 Prototype ... 218

B - 1.2.1 Analysis View... 218

B - 1.2.1.1 Logical Architecture .. 218

B - 1.2.1.1.1 Object Interfaces ... 219

B - 1.2.1.1.1.1.1.1.1 GameObject .. 219

B - 1.2.1.1.1.1.1.1.2 AI2Object.. 220

B - 1.2.1.1.1.1.1.1.3 IAIObject .. 220

APPENDIX Page

xvi

B - 1.2.1.1.1.1.1.1.4 IGraphics2DObject 220

B - 1.2.1.1.1.1.1.1.5 IGraphics3DObject 221

B - 1.2.2 Logical View... 222

B - 1.2.2.1 Programming Utilities Library... 222

B - 1.2.2.2 Systems .. 223

B - 1.2.2.1.2 AI System ... 224

B - 1.2.2.1.1 AI Component - Implementation .. 224

B - 1.2.2.2.1.1.1 AI Exported Classes.. 225

B - 1.2.2.2.1.1.1.1.1 Root... 225

B - 1.2.2.2.1.1.2 Private AI System Implementation........................... 227

B - 1.2.2.2.1.1.2.1.1 CAISystem.. 227

B - 1.2.2.2.1.1.2.1.2 CAIProcessorObject 228

B - 1.2.2.2.1.1.2.1.3 CAIViewProcessor 229

B - 1.2.2.1.2 AI Component - Interfaces.. 231

B - 1.2.2.2.1.2.1 AI Interfaces Object System Can Use To Communicate

With AI System 232

B - 1.2.2.2.1.2.1.1.1 IAIProcessorObject..................................... 232

B - 1.2.2.2.1.2.1.1.2 IAISystem ... 232

B - 1.2.2.2.1.2.1.1.3 IAIViewProcessor....................................... 233

B - 1.2.2.2.1.2.2 AI Interfaces The Object System Implements 234

B - 1.2.2.2.1.2.2.1.1 IAICapableObject 234

B - 1.2.2.2.1.2.2.1.2 IAIObjectSystem... 234

B - 1.2.2.2.1.2.2.1.3 IAIProcessableObject.................................. 235

APPENDIX Page

xvii

B - 1.2.2.2.1.2.2.1.4 IAISceneManager 236

B - 1.2.2.2.1.2.2.1.5 IAIView .. 236

B - 1.2.2.2.2 AI2System .. 238

B - 1.2.2.2.1 AI2 Component - Implementation 238

B - 1.2.2.2.2.1.1 AI2 Exported Classes.. 239

B - 1.2.2.2.2.1.1.1.1 Root... 239

B - 1.2.2.2.2.1.2 Private AI2 System Implementation......................... 241

B - 1.2.2.2.2.1.2.1.1 CAI2System.. 241

B - 1.2.2.2.2.1.2.1.2 CAI2ProcessorObject 242

B - 1.2.2.2.2.1.2.1.3 CAI2ViewProcessor 243

B - 1.2.2.2.2 AI2 Component - Interfaces.. 245

B - 1.2.2.2.2.2.1 AI2 Interfaces Object System Can Use To

Communicate With AI2 System ... 246

B - 1.2.2.2.2.2.1.1.1 IAI2ProcessorObject................................... 246

B - 1.2.2.2.2.2.1.1.2 IAI2System ... 246

B - 1.2.2.2.2.2.1.1.3 IAI2ViewProcessor..................................... 247

B - 1.2.2.2.2.2.2 AI2 Interfaces The Object System Implements 248

B - 1.2.2.2.2.2.2.1.1 IAI2CapableObject 248

B - 1.2.2.2.2.2.2.1.2 IAI2ObjectSystem....................................... 248

B - 1.2.2.2.2.2.2.1.3 IAI2ProcessableObject 249

B - 1.2.2.2.2.2.2.1.4 IAI2SceneManager 250

B - 1.2.2.2.2.2.2.1.5 IAI2View .. 250

B - 1.2.2.3.2 Game Object System .. 252

APPENDIX Page

xviii

B - 1.2.2.3.1 Game Object Component - Implementation 252

B - 1.2.2.2.3.1.1 Game Object Component Exported Classes 252

B - 1.2.2.2.3.1.1.1.1 Root... 252

B - 1.2.2.2.3.1.2 Private Game Object Component Implementation ... 254

B - 1.2.2.2.3.1.2.1.1 CDemoCamera.. 254

B - 1.2.2.2.3.1.2.1.2 CDemoGameObjectSystem 255

B - 1.2.2.2.3.1.2.1.3 CDemoMainView 259

B - 1.2.2.2.3.1.2.1.4 CDemoObject ... 259

B - 1.2.2.2.3.1.2.1.5 CDemoObjectSceneManager...................... 265

B - 1.2.2.2.3.1.2.1.6 CDemoViewBaseClass 267

B - 1.2.2.2.3.1.2.1.7 CTriangleGameObject 273

B - 1.2.2.2.3.1.2.2 Data Structures... 275

B - 1.2.2.2.3.1.2.2.1 demoPoint2i .. 275

B - 1.2.2.2.3.1.2.2.2 demoPoint3f .. 276

B - 1.2.2.2.3.1.2.2.3 demoRect .. 276

B - 1.2.2.3.2 Game Object Component - Interfaces................................. 278

B - 1.2.2.2.3.2.1.1.1 IObjectSystem... 278

B - 1.2.2.3.3 Component Attachings.. 279

B - 1.2.2.4.2 Game System .. 281

B - 1.2.2.2.4.1.1.1.1 CDemoApplication 281

B - 1.2.2.5.2 Graphic 3D System... 284

B - 1.2.2.5.1 Graphics3DComponent - Implementation.......................... 284

B - 1.2.2.2.5.1.1 Exported Classes... 285

APPENDIX Page

xix

B - 1.2.2.2.5.1.1.1.1 Root... 285

B - 1.2.2.2.5.1.2 Private Graphics3D System Implementation............ 287

B - 1.2.2.2.5.1.2.1.1 CGraphics3DProcessorObject 287

B - 1.2.2.2.5.1.2.1.2 CGraphics3DSystem................................... 288

B - 1.2.2.2.5.1.2.1.3 CGraphics3DViewProcessor 291

B - 1.2.2.5.2 Graphics3DComponent - Interfaces.................................... 293

B - 1.2.2.2.5.2.1 Interfaces the Object System can use to communicate

with the Graphics3D System .. 294

B - 1.2.2.2.5.2.1.1.1 IGraphics3DProcessorObject...................... 294

B - 1.2.2.2.5.2.1.1.2 IGraphics3DSystem 295

B - 1.2.2.2.5.2.1.1.3 IGraphics3DViewProcessor........................ 295

B - 1.2.2.2.5.2.2 Interfaces The Object System Implements 297

B - 1.2.2.2.5.2.2.1.1 IGraphics3DCamera 297

B - 1.2.2.2.5.2.2.1.2 IGraphics3DCapableObject 297

B - 1.2.2.2.5.2.2.1.3 IGraphics3DObjectSystem 298

B - 1.2.2.2.5.2.2.1.4 IGraphics3DProcessableObject 298

B - 1.2.2.2.5.2.2.1.5 IGraphics3DSceneManager 299

B - 1.2.2.2.5.2.2.1.6 IGraphics3DView 300

B - 1.2.2.6.2 Graphics 2D System ... 302

B - 1.2.2.6.1 Graphics Component - Implementation.............................. 302

B - 1.2.2.2.6.1.1 Exported Classes... 303

B - 1.2.2.2.6.1.1.1.1 Root... 303

B - 1.2.2.2.6.1.2 Private Graphics System Implementation................. 305

APPENDIX Page

xx

B - 1.2.2.2.6.1.2.1.1 CGraphicsProcessorObject 305

B - 1.2.2.2.6.1.2.1.2 CGraphicsSystem.. 308

B - 1.2.2.2.6.1.2.1.3 CGraphicsViewProcessor 310

B - 1.2.2.6.2 Graphics Component - Interfaces 312

B - 1.2.2.2.6.2.1 Interfaces Object System Can Use To Communicate

With Graphics System .. 313

B - 1.2.2.2.6.2.1.1.1 IGraphicsProcessorObject........................... 313

B - 1.2.2.2.6.2.1.1.2 IGraphicsSystem ... 313

B - 1.2.2.2.6.2.2 Interfaces The Object System Implements 315

B - 1.2.2.2.6.2.2.1.1 I2DGraphicsCamera 315

B - 1.2.2.2.6.2.2.1.2 I2DGraphicsObject 316

B - 1.2.2.2.6.2.2.1.3 I2DSpriteGraphicsObject............................ 316

B - 1.2.2.2.6.2.2.1.4 IGraphicsCamera .. 317

B - 1.2.2.2.6.2.2.1.5 IGraphicsCapableObject 317

B - 1.2.2.2.6.2.2.1.6 IGraphicsObjectIterator 317

B - 1.2.2.2.6.2.2.1.7 IGraphicsObjectSystem 318

B - 1.2.2.2.6.2.2.1.8 IGraphicsSceneManager 318

B - 1.2.2.2.6.2.2.1.9 IGraphicsView .. 319

B - 1.2.2.2.6.2.2.1.10 IGraphicsViewIterator 320

B - 1.2.2.2.6.2.2.1.11 IProcessableGraphicsObject 321

B - 1.2.2.3 Utility Includes... 323

B - 1.2.2.3.1.1.1.1.1 CStdStr .. 323

B - 1.2.2.3.1.1.1.1.2 IIterator ... 334

APPENDIX Page

xxi

B - 1.2.2.3.1.1.1.1.3 VectorBasedIteratorTemplateClass 335

B - 1.2.3 Dynamic View .. 337

B - 1.2.3.1 Initialize ... 337

B - 1.2.3.1.1.1.1.1.1 Initialize AI2 System 337

B - 1.2.3.1.1.1.1.1.2 Initialize AI System 340

B - 1.2.3.1.1.1.1.1.3 Initialize Graphics 3D System 343

B - 1.2.3.1.1.1.1.1.4 Initialize Graphics System 346

B - 1.2.3.1.1.1.1.1.5 Initialize Object System.............................. 350

B - 1.2.3.1.1.1.1.1.6 Initialize Game System 353

B - 1.2.3.2 Tick .. 356

B - 1.2.3.2.1.1.1.1.1 Tick AI System ... 356

B - 1.2.3.2.1.1.1.1.2 Tick AI2 System ... 362

B - 1.2.3.2.1.1.1.1.3 Tick Graphics 3D System 367

B - 1.2.3.2.1.1.1.1.4 Tick Graphics System 373

B - 1.2.3.2.1.1.1.1.5 Tick Prototype Game System 379

B - 1.2.4 Component View .. 380

B - 1.2.4.1.1.1.1.1.1 AI System 2... 380

B - 1.2.4.1.1.1.1.1.2 Artificial Intelligence 380

B - 1.2.4.1.1.1.1.1.3 Audio... 380

B - 1.2.4.1.1.1.1.1.4 Game System .. 380

B - 1.2.4.1.1.1.1.1.5 Graphics .. 381

B - 1.2.4.1.1.1.1.1.6 Graphics 3D System 381

B - 1.2.4.1.1.1.1.1.7 Network... 381

APPENDIX Page

xxii

B - 1.2.4.1.1.1.1.1.8 Object & Object Management System (Data)

 381

B - 1.2.4.1.1.1.1.1.9 OGRE Graphics Engine.............................. 381

B - 1.2.4.1.1.1.1.1.10 Physics Component................................... 382

B - 1.2.4.1.1.1.1.1.11 User Interface.. 382

xxiii

LIST OF FIGURES
Figure Page

1 - Rollings’ and Morris’ Game Architecture... 2

2 - Object Centric View of Games .. 4

3 - Current Object Centered COTS Approach.. 5

4 - Object/Class Level Separation of Logic .. 12

5 Rollings’ and Morris’ Game Architecture... 15

6 - Screenshot from the Game Starcraft ... 24

7 - Screenshot from Unreal Tournament .. 26

8 - Screenshot Unreal Tournament 2004.. 26

9 - Playing Starcraft Use Case Diagram.. 28

10 - Logical Modules .. 29

11 - Select Object (Subsystem interactions).. 31

12- A Simple Layered Architecture... 35

13- Data Flow... 37

14- Data Flow at the Component Level (AI) .. 38

15 – Data Centered... 39

16 – Select Object (Logical Module Interactions – Data Centered) 40

17- Independent Components ... 42

18 - Layered and Data-Centered .. 45

19 - Repository.. 46

20 - Data Centered System of Systems.. 51

Figure Page

xxiv

21- Intelligent Data System Centered System of Systems ... 52

22 – System Defined as a Domain-specific Component & the Object Component 53

23 - Ticking the Game System of Systems... 55

24 – Example Peer to Peer Networked Game .. 56

25 -Example Client Server Networked Game ... 57

26- Potential Design using many AI Systems ... 59

27 – Interfaces Required to Connect Domain-specific Component to the Object

Management Component .. 62

28 – Example Sequence of Connecting a Domain-specific Component to the Object

Management Component .. 62

29 – Interfaces Required for Domain-specific System To Request Objects to Process.... 64

30 – Example Sequence of a Domain-specific System Requesting Objects to Process 65

31-Potential Design using a Domain Observer Object .. 66

32-Potential Sequence using a Domain Observer Object .. 67

33 - Tick Game System Use Case ... 70

34 – Tick Graphics System.. 71

35 – Update View Component Sequence .. 72

36 – Update View – Classes and Interfaces.. 73

37 – Prototype Subsystems.. 75

38 – Analysis of Object Data Required... 77

39 - Example: Graphics3D System Interfaces .. 79

40 – Interfaces Into the Graphics 3D System ... 80

Figure Page

xxv

41 – Interfaces the Object and Object Management System Must Implement in order for

the Graphics 3D Component to Use it. ... 81

42 – Connecting the Object Component to the Graphics3D Component......................... 82

43 – Prototype Sequence: Tick Graphics2D System.. 83

44 – Screenshot1 from Prototype.. 84

45 - Screenshot 2 from Prototype ... 84

46 : Analysis.. 107

47 : Logical Modules .. 109

48 : Use Case Model... 111

49 : Startup ... 112

50 : Options Menu .. 114

51 : Play Starcraft... 117

52 : Analysis: Attack Unit (Logical Modules Involved).. 118

53 : Design: Attack Unit (Component Sequence) ... 121

54 : Analysis: Change Map Display Area by Moving Mouse to Edge of Screen(Logical

Modules Involved)... 124

55 : Design: Change Map Display Area (Component Sequence) 125

56 : Analysis: Gather Resources (Logical Modules Involved) 127

57 : Design: Gather Resources (Component Sequence)... 130

58 : Analysis: Give unit an order by clicking order button (Logical Modules Involved)133

59 : Design: Give unit an order (Component Sequence).. 135

60 : Analysis: Move to Location (Sub-system Interactions) ... 137

61 : Design: Move to Location (Component Sequence) ... 140

Figure Page

xxvi

62 : Analysis: Research Technology (Sub-System Interaction)...................................... 143

63 : Design: Research Technology (Component Sequence)... 144

64 : Analysis: Select Object (Logical Modules Involved)... 146

65 : Design: Select Object (Component Sequence) .. 148

66 : Tick Starcraft Game System .. 153

67 : Tick AI System ... 155

68 : Design: Tick AI System (Component Sequence)... 156

69 : Design: Navigate Map - Pathfinding (Component Sequence) 157

70 : Tick Audio System.. 161

71 : Design: Tick Audio System (Component Sequence).. 162

72 : Tick Graphics Component ... 164

73 : Design: Update View Object (Component Sequence)... 165

74 : Design: Update View - (Component Sequence) .. 167

75 : Design: Update View (Class-Interface Sequence) .. 168

76 : Tick Network Component .. 173

77 : Design: Tick Network System (Component Sequence).. 174

78 : Tick Object Component ... 176

79 : Design: Tick Object / Game Logic System (Component Sequence)........................ 177

80 : Tick UI Component.. 179

81 : Design: Tick User Interface (Component Sequence) .. 180

82 : Use Cases Model ... 182

83 : Play Unreal Tournament ... 183

84 : Analysis: Collect Item (Logical Modules Involved) ... 184

Figure Page

xxvii

85 : Analysis: Move (Logical Modules Involved) ... 186

86 : Design: Tick... 188

87 : Tick AI System ... 191

88 : Design: Tick AI System (Component Sequence)... 192

89 : Tick Audio Component .. 194

90 : Design: Tick Audio System (Component Sequence).. 195

91 : Tick Graphics 3D Component ... 196

92 : Design: Tick Graphics 3D Component (Component Sequence) 197

93 : Design: Update Main Play View (Component Sequence)....................................... 199

94 : Tick Network Component .. 201

95 : Design: Tick Network System (Component Sequence).. 202

96 : Tick Object Component ... 204

97 : Design: Tick Object Component(Component Sequence) .. 205

98 : Tick Physics Component.. 207

99 : Design: Tick Physics Component (Component Sequence)...................................... 208

100 : Prototype Logical Architecture ... 218

101 : Required Object Interfaces.. 219

102 : Programming Utilities Library.. 222

103 : Systems... 223

104 : AI Component - Example Implementation... 224

105 : Exported Classes ... 225

106 : Private AI System Implementation .. 227

107 : AI Component - Public Interfaces ... 231

Figure Page

xxviii

108 : Interfaces Object System Can Use To Communicate With AI System................... 232

109 : Interfaces The Object System Implements ... 234

110 : AI2 Component - Example Implementation... 238

111 : AI2 Exported Classes... 239

112 : Private AI2 System Implementation .. 241

113 : AI2 Component - Interfaces... 245

114 : AI2 Interfaces Object System Can Use To Communicate With AI2 System.......... 246

115 : AI2 Interfaces The Object System Implements .. 248

116 : Game Object Component Exported Classes.. 252

117 : Private Game Object Component Implementation.. 254

118 : Game Object System - Data Structures ... 275

119 : Game Object Component - Interfaces ... 278

120 : Game Object System - AI Interface Implementations.. 279

121 : Game Object System - AI2 Interface Implementations.. 279

122 : Game Object System - Graphic Interface Implementations 280

123 : Game Object System - Graphic3D Interface Implementations 280

124 : Game System.. 281

125 : Graphics3DComponent - Implementation... 284

126 : Exported Classes ... 285

127 : Private Graphics3D System Implementation .. 287

128 : Graphics3DComponent - Interfaces.. 293

129 : Interfaces the Object System can use to communicate with the Graphics3D System

... 294

Figure Page

xxix

130 : Interfaces The Object System Implements ... 297

131 : Graphics Component - Implementation .. 302

132 : Exported Classes ... 303

133 : Private Graphics System Implementation ... 305

134 : Graphics Component - Interfaces.. 312

135 : Interfaces The Graphics System Implements... 313

136 : Interfaces The Object System Must Implement.. 315

137 : Utility Includes .. 323

138 : Initialize ... 337

139 : Design: Initialize AI2 System (Component Sequence) .. 338

140 : Design: Initialize AI2 System (Class-Interface Sequence) 339

141 : Design: Initialize AI System (Component Sequence) .. 341

142 : Design: Initialize AI System (Class-Interface Sequence) 342

143 : Design: Initialize Graphics 3D System (Component Sequence) 343

144 : Design: Initialize Graphics 3D System (Class-Interface Sequence) 344

145 : Design: Initialize Graphics System - (Component Sequence)............................... 347

146 : Design: Initialize Graphics System (Class-Interface Sequence)........................... 348

147 : Design: Initialize Object System - (Component Sequence) 351

148 : Design: Initialize Object System (Class-Interface Sequence) 352

149 : Design: Initialize Game System - (Component Sequence) 353

150 : Tick .. 356

151 : Design: Tick AI System - (Component Sequence) .. 357

152 : Design: Tick AI System (Class-Interface Sequence) ... 359

Figure Page

xxx

153 : Design: Tick AI2 System (Component Sequence).. 362

154 : Design: Tick AI2 System (Class-Interface Sequence) ... 364

155 : Design: Tick Graphics3DSystem (Component Sequence)..................................... 367

156 : Design: Tick Graphics3D System (Class-Interface Sequence) 369

157 : Design: Tick Graphics System (Component Sequence) .. 374

158 : Design: Tick Graphics System (Class-Interface Sequence) 375

159 : Prototype Component Model... 380

1 INTRODUCTION

1.1 Motivation

 Electronic games are a billion dollar industry developing software system

commonly reaching into the millions of lines of code (“3 Million”), but the development

process remains very much unchanged from the early days of programming (“A $30

Billion Industry”). It’s not unusual for development houses to move from the game idea

directly to coding, where the success or failure depends almost entirely on the skill and

experience level of the developers (Rollings 164-165). A base architecture that unifies

the interaction between game subsystems and still allows for flexibility and expandability

could greatly impact development the electronic entertainment industry.

1.1.1 The current Approach and Its Shortcomings

 The current approach is to design and develop a custom architecture for each

game. A game development house may carry over portions of a design from one game to

another, but this is usually the result of individual experience rather than a formal design

approach. So while skilled developers are still able to achieve the desired results, it is

rarely on time and on schedule (Fristrom).

One problem with such an ad hoc approach to creating a game architecture is that

quality attributes like flexibility and expandability are rarely incorporated in the design.

For example ID™ software ended up rewriting almost all the code when moving from the

game Quake™ 3 to Doom™ 3 (Sloan). Both are first person shooters, with the same

game play. In fact the only noticeable difference is improved graphics. Since the game

is primarily a graphical improvement, then the obvious culprit is the existing architecture

didn’t lend itself to expandability. ID’s™ experience is definitely not unique. Countless

 2

companies waste time rewriting music code, GUI code, etc. simply because the existing

code doesn’t fit into the new game.

Figure 1 - Rollings’ and Morris’ Game Architecture

 Rollings and Morris, the authors of Game Architecture and Design, reviewed

existing game architectures, and attempted to map out a possible separation of logic (see

Figure 1 above). While the component layout from Figure 1 may work for a game, I

would argue the webbing of interrelated dependencies among subsystems would greatly

limit the amount of expandability and re-use between game projects. A suitable

architecture should not only have a logical separation of sub-systems, but also allow for

 3

any of those sub-systems to be easily swapped out or modified without breaking the

overall system.

 Part of the reason most attempts at a game architecture have a great deal of

interdependencies is because of underlying object-centric view of games (see Figure 2

below). Games have always been about game objects living in a virtual world. Gam

objects have their own behavior, draw themselves to the screen, and even make their ow

sounds. This view makes sense logically, and seems to follow the widely acc

object-oriented paradigm. This view, however, is starting to show its limitations as the

complex

e

n

epted

ity for such functionality as drawing and thinking continue to climb

around.

exponentially. Such complexity has made game objects unwieldy and difficult to design

Game

GameObjectObject contains code
for drawing, behavior,
physics, etc.

0..*

1+Manages

 4

f

 down to the actual camera

 a

lves

hnology

 It also means

ame object developers must have a very strong knowledge about all the COTS

components they are using to implement that object (See Figure 3 below).

Figure 2 - Object Centric View of Games

1.1.2 The Migration to COTS

 Software practices in games are undergoing a massive revolution. Games are

approaching the production value of blockbuster movies, but without the same level o

modularity and outsourcing. Movies are created by a several individual companies each

specialized in areas like sound, special effects, etc. This level of separation of labor

results in outstanding quality, and the ability to plan a timeline

shot. Games are just beginning this transition from 100% in-house code, to more of

Component Off the Shelf (COTS) based approach (Adolph).

 Migration to COTS based systems is the first step in improving games on a

massive scale. Allowing companies to focus on a single specialty means software

technology can advance at a faster rate, and those advances are available for more games

to use. While using COTS components can improve quality and time to develop (A

et al. 1), staying with the current object-centric view means components are rarely more

than functional libraries designed to help the object operate. Game objects are still

responsible for all their own data manipulation including: graphics drawing, artificial

intelligence (AI), sound, physics, etc. While games will still benefit from the tec

COTS offers, it still means game objects are extremely large and complex.

g

 5

c d Ex is ting COTS Us e M ode l

COTSnCOTS2COTS1

Ga m e Obje c t

...
C a lls fu nctio n a lity inC a lls fu n ctio n a lity in

C a lls fu nctio n a lity in

Figure 3 - Current Object Centered COTS Approach

The object-centric view also limits re-use, even when using COTS components.

The object code is the least re-usable when moving between game projects, but it is the

object code that contains the calls to the various components. So when moving from one

project to another, developers will often have to re-write those same interactions. While

a well-designed class hierarchy can mitigate much of that risk, the objects are still

strongly tied to the COTS components they use. I propose there exists an architecture

that can further increase code-reuse while reducing coupling.

1.1.3 Not a Game Engine

A common trend emerging in the game industry is the introduction to the all-

encompassing COTS “game engine”. Development houses can purchase very powerful

“game engines”, allowing the developers to develop a game using a commercially proven

game framework. While this approach is an outstanding example of code re-use, it can

 6

limit the flexibility of the developers to design the game of their choosing. “Game

engines” can limit the developers in a variety of ways.

• Limits due to engine design – “Game engines” were built with an initial game

in mind, and the completed design reflects this intent. Trying to use

the UnrealEngine™, the game engine used to create the first person

shooter game Unreal™, to create a console style football game may

prove to be a very laborious task.

• Limits due to cost – “Game engines” can be very expensive. Top-tier game

engines can cost in the hundreds of thousands of dollars (“3D

Engines”). The decision to use such an engine means the game

developed must be mass marketable in order to recoup that large

initial investment. Unfortunately, in order to have mass market

appeal the developer has significantly reduced options in what kind

of game to create.

The intent of this thesis is to design at a higher level of abstraction than the design

of game engine. This is not to say a reusable commercial game engine could not be

developed using the proposed architecture, but the distinction should be made between an

architecture and a fully fleshed out system design.

1.2 High Level Objectives and Goals

The main objective of this thesis is to design and prove there exists a software

architecture that is both expandable enough to grow with the technology and flexible

 7

enough to support the diverse world of games. Such an architecture would provide a

starting place for game developers to begin from, and perhaps the start of a standardized

communication between components used in a game system. A successful architecture

will scale with the complexities of today’s games, without sacrificing the developer’s

creative control over the game project. To achieve this rather lofty goal, the resulting

architecture must fulfill the following requirements:

1.2.1 Architectural Requirement: Support COTS-Based Development

 First the architecture must have strong separation of logic. The idea is to more

completely separate the logic such that game subsystems can be independently developed

and tested. This requirement is consistent with COTS based systems, and this thesis

intends to continue with the COTS based approach.

In order to verify the resulting architecture meets this requirement it must be

demonstratable that components can be independantly developed and tested. These

components should be easy to integrate into a game application without a great deal of re-

write on the part of the game. Ideally components will integrate in a similar yet logical

fashion.

1.2.2 Architectural Requirement: Better Knowledge Localization

The architectural requirement of better knowledge localization exists because of the

diverse capabilities required in games. Modern day games require outstanding graphics,

realistic physics, mind-bending artificial intelligence, and theater quality audio. Even if

the game developer is using COTS components to provide those capabilities, he/she must

still acquire a large amount of domain knowledge in order to use the components

 8

properly. The simple fact is game developers are forced to become experts in various

technical fields when they should be focusing on developing gameplay.

The required level of domain knowledge is only going to increase as game

technology advances, and an attempt to resolve this issue must be made soon. This thesis

will endeavor to not only identify the commonalities between component interfaces, but

also provide a design that minimizes the required component API understanding in order

to use a COTS component.

In order to verify the resulting architecture meets this requirement the architecture

should demonstrate a reduced API into the component itself. The technology

components should also integrate into a game without requiring the game programmer

understand the domain in order to use it. This eliminates the possibility of writing

technology components a functional libraries.

1.2.3 Architectural Requirement: Flexibility / Modifiability

 Flexibility is key to the future of game development. Due to rising production costs,

the ability to mix and match re-usable software modules is critical to keeping costs down.

The proposed architecture should be game genre and technology independent allowing

developers to create a variety of games using various technologies. In order for this

architecture to make an impact on the games industry, it must be flexible enough that any

game project can use it.

In order to verify the resulting architecture meets this requirement it must be possible

to demonstrate that very different games can be written using the final architecture.

 9

1.2.4 Architectural Requirement: Expandability / Maintainability

Another critical architectural requirement, due to rising production costs, is

expandability and maintainability. Successful games often have new incarnations with

expanded game play and updated technology. For example, Blizzard’s™ successful

game Warcraft™ is currently on its third iteration with Warcraft™ 3. The new game

features added game play elements like powerful heroes and beautiful 3D graphics, but

the underlying game is still very similar. A successful architecture should easily allow

for this type of game evolution.

In order to verify the resulting architecture meets this requirement it must be possible

to demonstrate the architecture can easily support new or updated technology as well as

new functionality. For example it should be easy for developers to move a 2D game to

3D graphics without a massive overhaul.

1.2.5 Performance and Other Quality Attributes are NOT Requirements

It may seem odd to not include performance as a key requirement when designing an

architecture for a domain that demands such a high degree of performance. The reason

for this stems from the belief that performance is far less significant at the inter-

component communication level than it is within the subsystem itself. For example, the

graphical rendering loop to draw the 10 million triangles of an object is far more

significant to performance than the single inter-component communication telling the

graphics system to draw the object. Performance will not be ignored in the design

process, but the previously stated required quality attributes will carry a higher priority.

 10

Other quality attributes, like reliability or portability, are also not ignored. The scope

of this thesis, however, must be limited to qualities that can be verified and validated

within the allotted time frame. Follow-up work would be to use the SEI’s architectural

tradeoff analysis method to determine how these other quality attributes are supported by

this architecture. So for the purposes of this thesis, only those qualities deemed most

important became a requirement.

1.3 Contributions

The primary contributions of this thesis are the following:

• A better understanding of games as systems. The artifacts created in this thesis

will provide insight into what subsystems are involved in electronic games and their

boundaries.

• An architecture that supports easy development and integration of COTS

components for electronic games.

• An architecture that supports localization of domain knowledge, relieving the

requirement for game developers to become experts in everything.

• An architecture that supports flexibility and expandability in game development

by allowing developers to easily add/remove/modify game technology components.

• An architecture that support expandability and maintainability allowing

developers to more easily expand a game into a future incarnation.

2 LITERATURE REVIEW

2.1 Current State of Game Development in Literature

 There are currently dozens of books available on the subject of game

development. Most, however, cover in great detail a specific topic in game development

rather than an overall architecture. While these books definitely have their purposes,

there doesn’t exist any literature on how to properly organize these tidbits of knowledge.

Kevin Hawkin’s and David Astle’s book OpenGL Game Programming is a good

example of a typical game programming book. The book covers some of the many

graphics obstacles present in game development and how to use the OpenGL API. The

book discusses 3-D math, lighting, texturing, transformations, and other topics of interest

in programming 3-D graphics. After finishing this book the reader will have a solid

understanding of graphics and the OpenGL API, but using this knowledge within the

context of a complex system such as a game is still a mystery.

While the book is very well written, and covers the technical details involved in

pushing pixels with OpenGL, it gives almost no architecture or design information. The

book uses examples with a very monolithic design. A single game object will contain

everything - graphics code, AI, physics, etc (See Figure 4 below). While this approach is

fine for teaching the details of a game feature, it is HUGELY inadequate for a real game.

The simple separation of logic at the class level just isn’t enough for projects that can

reach into the millions of lines of code.

 12

G a m e

G a m e O bj e c t

+ T i ck() : vo i d
- Dra w() : vo i d
- Ca lcu la te B e h a vio r() : vo i d
- M a ke S o u n d s() : vo id

A l th o u g h th e l o g i c
m a y h a ve b e e n
b ro ke n i n to
su b -cla sse s, th e o b je ct
i s sti l l u l t im a te l y
re sp o n sib le fo r
d ra win g , A I, p h ysi cs,
e tc.

M e s h O bj e c t

S k e le ton Te x ture

0 ..*

1+M a n a g e s

Figure 4 - Object/Class Level Separation of Logic

 In order to see the many problems with such a microscopic approach to

architecture, consider some of the issues game developers regularly face. First the design

gives no insight into issues like portability, a very real concern for businesses interested

in the various consoles as well as the PC. Next the code is not re-usable because objects

are tightly coupled to their behavior. The design is neither flexible nor maintainable

because this design is VERY tightly coupled and changes you make have the potential to

affect the entire system.

 13

Rudy Rucker’s book Software Engineering and Computer Games makes an

attempt to teach game development with a reusable architecture. The book creates a

“Document/View” game framework. The emphasis is on the framework, as it is possible

to create many different games by simply expanding the author’s “pop” framework.

 The book introduces how design patterns can be used in a game context, and why

re-use should be important to a game developer. The author uses the document/view

architecture to separate the data from the drawing code, thus allowing changes to the data

without touching the visualization code.

While this framework has a great deal of flexibility in terms of game objects, it is

still quite limited. AI and physics are still left inside the objects making changes to those

areas very difficult. And while the graphics are somewhat separate from the objects, the

author still uses direct access between the graphics and the data making the components

both very dependant upon each other, and not quite staying true to the architectural

model.

2.2 The Latest Book Trends in Game Development

The latest trend in game books is the “gems” like books. Books like Game

Programming Gems and AI Game Programming Wisdom offer developer ready nuggets

of wisdom. Snippets of code that offer very good solutions to difficult problems

commonly found in game development. These books present low level solutions, usually

in the form of a C++ class or two, that solve problems game programmers face everyday.

These books are an incredible resource because almost all their “gems” are

architecture independent. They are solutions aimed squarely at helping the programmer,

 14

not the system architect. So while the books are an excellent resource to any game

developer, the solutions could not be strung together to form a coherent architecture.

Developers can use the solution to solve a specific problem, but they may not understand

WHERE the solution best fits into the overall system.

2.3 The First and Only Real Attempt at Game Architecture

 Andrew Rollings’s and Dave Morris’s Game Architecture and Design is the only

book on the market right now that discusses games in terms of their architecture. The

book proposes to design around the quote by Dave Roderick, “A game is just a real-time

database with a pretty front end.” While that statement might seem correct, this thesis

proposes the slightly modified statement – games are a system of systems operating on a

database with a pretty front end.

The book gives an excellent introduction into the roots of game development and

why architecture and software engineering practices have never really taken hold in this

area of software. The authors attribute the lack of engineering practices to the origins and

attitudes of game developers. Games originated from solo programmers who hand coded

every line, and that solo attitude still prevails in the industry today. Not using third party

components is still a point of pride for many developers.

 While the authors provide an excellent history of the game development process,

the book really doesn’t spend much time on architecture (despite the fact that

“architecture” is in the book’s title). The book proposes an architecture for a game, but

really doesn’t provide any insight as to how the components communicate, or even why

the proposed architecture is suitable and useful.

 15

Figure 5 Rollings’ and Morris’ Game Architecture

2.4 Software Architecture

hat

reference models, and the reference architecture.

 In order to properly design a flexible and expandable architecture for games, it is

not only necessary to understand games, but also software architecture in general. Len

Bass, Paul Clements, and Rick Kazman wrote Software Architecture in Practice as a very

good introduction to software architecture. The book uses clear English to explain w

an architecture is, as well as the concepts involved, including architectural style,

 16

 Software Architecture in Practice defines many of the quality attributes ass

with an architecture, as well as what styles are best suited to

ociated

each attribute. This book

rovides some very useful insight in designing an architecture

is Designing Flexible Object-Oriented Systems with UML by Charles Richter. This book

provides many simple techniques to identify design flaws that can affect flexibility. The

author teaches some guidelines to increase cohesion and decrease coupling, the

advantages and disadvantages of class generalization and specialization, and an analysis

of specialization versus aggregation. Richter also gives insight in how to analyze

dynamic diagrams (e.g. sequence diagrams) for flexibility.

 Richter’s book should provide the litmus test for the flexibility in my design. He

provides an informal, but effective way to quickly assess a design in terms of flexibility.

Once the design has passed this informal inspection, a more formal approach can begin

and the demo can be built.

should prove useful when work begins on designing the proposed architecture. The

reference offers a great deal of information that should help narrow down the search for

architectural candidates.

 Another book that p

3 THESIS METHODOLOGY

This thesis takes a pretty straightforward approach to arrive at the desired

architecture. The first step is to analyze and understand games as software systems using

standardize software engineering practices. Only looking at a few select games will scale

this monumental task down significantly. The analysis will be further limited to

identifying the functional modules and their interfaces. This level of analysis should

provide enough of an understanding to begin the design work for the architecture.

The next step is to identify candidate architectural styles that have the quality

attributes games require as identified in the “High Level Objectives and Goals” section of

Chapter One. This step should yield architectural styles that should be considered when

constructing potential architectures.

Once the preliminary research has been completed, the architecture design can begin.

This involves incorporating various architectural styles into a design until the architecture

can support not only the architectural requirements from Chapter One, but also the

functionality Identified during the analysis phase. Through design trial and error, and

architectural analysis techniques a proposed architecture should emerge.

After the proposed architecture has been designed, it is time to prove that it can

work. The first step to proving the architecture will be to apply the architecture in the

form of a simple design to the analyzed games. This will help to validate that the

architecture can support the types of systems it was intended for. The next step is to

actually build a game-like system to demonstrate the quality attributes. Unfortunately

designing a commercial quality game to fully demonstrate the capabilities of the

architecture are beyond the scope of this thesis. A demonstrative subset of game

 18

functionality, however, will be put together into a prototype to show some of the more

important features. A prototype will also have the added benefit of helping to refine the

architecture into a more correct state, as well as identify some of it’s limitations.

3.1 Analysis of Games as Software Systems

 In order to design an architecture for the games of tomorrow, we must first

understand the problems faced today. As noted in the literature review section, there

exists very little documentation on the subject of architecture in games. Since more

information is required, more creative approaches to analysis will be taken.

 Since actual documentation on architecture in existing games is virtually non-

existent, we will do the next best thing – understand the design of a game similar to

existing games. The approach is simple. Treat an existing game as the customer

requirements, and attempt to design a game that meets those requirements following

standard software engineering practices. Performing this process for several games

should provide a satisfactory understanding of what is required in an architecture to meet

the needs of those existing games.

3.1.1 Selecting Games to Analyze

 Since the goal of this thesis is to construct an architecture that will meet the needs

of most electronic games, more than one game must be analyzed. In truth, such an

architecture would require a thorough understanding of every possible game created.

Due to the constraints of a temporal existence, this thesis will attempt to refine the search

space into something more manageable.

 19

 Rather than analyze every existing game, existing games will be divided into

categories where a single title could be selected to represent all games in that category.

Fortunately the electronic games industry has already categorized titles into genres and

we merely have to locate games representative of their genres. This approach should

provide the best possible results given the time restrictions.

 Game genres can be further divided into sub-categories like single-player vs.

networked, 2-D vs. 3-D, etc. but I propose to show that these subdivisions are expansions

of the same architecture. For example the differences between a 2-D game, and a 3-D

game of the same genre should be localized in the components. However, the types of

components and their interactions should remain the same. In the end I hope to show that

a single architecture is capable of supporting all these genres.

3.1.1.1 Existing Game Genres

• Fighting

The market was successfully introduced to fighting games in 1991

by Capcom and Street Fighter II. The opportunity to have fantastic heroes

battle in hand to hand combat gave adolescent gamers the opportunity to

connect to unique alter egos, and began the “golden age” of the arcade

(“History of Arcade Games”). Fighting games are among the most

simplistic in nature. They are meant to be simple, fast, and fun.

• First Person Shooters (FPS)

First person shooters were invented in the 1992 by John Carmack

and ID software with Wolfenstein 3D™ (“A Brief History”). The game

 20

ushered in a new era of 3-D immersive worlds where players could

explore, and experience the electronic universe in the first person.

This genre is probably the most diverse with games ranging from

single player only, shoot to kill everything games like Doom™ and

Quake™, to massively multiplayer universes like Halo™. First person

shooters are almost always state of the art in terms of technology, and best

noted for their outstanding graphics. Releasing a FPS using last years

technology is a recipe for disaster in the retail market.

• Platform

Platform games are the definitive arcade games. Icons like Super

Mario Bros. ™ and Donkey Kong ™ were among the first to dominate the

scene. Platform games require the player to navigate a character through

various puzzles using a player’s wit and skill with the joystick. Platform

games are a relatively small market on the computer, but they still

dominate the consoles with memorable characters like Lara Croft ™.

• Strategy

The electronic strategy games of today are simply extensions of

their board game ancestors. Strategy games typically involve intricate rule

systems where player must master tactics and strategies rather than fast

reflexes. Games range from the 2-D turn based classic Civilization™ to

the 3-D real time masterpiece Warcraft™ III.

• Role Playing

 21

Role playing is another genre that has its roots outside the

electronic forum. Role playing games are a form of interactive fiction,

where the player gets to play the role of one or more characters in the

story. One of the staples of role playing games is character advancement.

The character(s) the player controls will continue to grow in skills and

abilities allowing the player to evolve a truly unique alter ego.

• Sports

Simply put, sports games are just the electronic versions of the real

thing. Electronic sports games allow gamers to play the game without

actually having train there whole lives to become professional athletes.

Unhappy with the outcome of the super bowl, challenge your neighbor to

a rematch in Madden 2002™.

 Obviously there are games that do not fit into any of these genres or would be

better described as a combination of genres, but these six categories arguably represent

the bulk of electronic games available today.

3.1.1.2 Further Refinement – Isolate Important Properties

 Unfortunately, properly analyzing even 6 games is too large of a task for the

scope of this thesis. To ensure this further scaling has a minimal impact on the quality of

the resulting architecture, I’ve decided to isolate the most important features. A

minimum selection of games that covers those features will be chosen.

• 2D vs. 3D

 22

 2D games are two dimensional games where the character exists in

a two dimensional world. Platform games like Super Mario Brothers™

and strategy games like Starcraft™ are examples of 2D games.

 3D games are games that take place in the third dimension. Here

the distinction must be made between two dimensional games using 3D

graphics, like Warcraft ™ 3 and games with fully three dimensional

worlds like Quake™. For this thesis it is important to select a game in the

later category, because it is important to maximize the differences in the

game components. Fully three dimensional worlds require different

physics, AI, as well as 3D graphics.

 All games fall under one of these two categories, so the final

selection must include one game from each category.

• Non-Networked vs. Networked vs. Massively Multiplayer

 Non-networked games are games that exist on only one machine.

Code and data does not need to be distributed across a network while the

game is playing. Almost all games offer this style of play, allowing the

human player to compete against computer opponents on a single

machine.

 Networked games are games where human players can compete

against other human players over a network. Most games of this sort use

 23

the simple client/server model and usually have a set maximum number of

players (clients) per game.

 Massively Multiplayer Online Games (MMOG) have been around

for a while in many text based multi-user dungeons or MUDs, but have

become very popular in the mainstream with the 3D dungeon romp -

Everquest™. MMOGs allow thousands of players to exist persistently in

a virtual world. Unfortunately due to the scope of this thesis, MMOGs

will not be covered, but definitely represent an area that should be covered

in future research.

• AI – Single Entity vs. Managed or Team

 Artificial intelligence in games can be broken into two very simple

categories. Games with single entity intelligence are games where each

game object has its own AI and behaves relative to its own situation.

There is no mastermind or general coordinating the actions of the objects

to form an overall strategy.

 Managed or Team AI games expand on the single entity AI model

and add the concept of collaboration between objects. Objects still have

their own intelligence, but a new layer has been added that can view the

game in terms of tactics and strategy.

3.1.2 The Selected Games for Analysis

 After a great deal of review, the search has been narrowed down to two games

that exist in to different genres and cover all the important properties. While these two

 24

games cannot fully represent all possible electronic games, these two games should

provide a solid foundation given the time constraints and scope of this thesis. This

foundation should be adequate to isolate many of the component interactions and support

the design of an architecture that could support the needs of most games.

Starcraft™ by Blizzard Entertainment

 The first game chosen for analysis is the award winning Starcraft™ by Blizzard

Entertainment™. The game features a 2D isometric view and some of the best game play

ever. The game was released in 1998, and has become the yard stick all other real-time

strategy (RTS) games are measured by. For analysis purposes the game was chosen

because it is two dimensional, offers solid non-networked or single player game play, and

a managed AI system.

Figure 6 - Screenshot from the Game Starcraft

 25

Unreal Tournament

 Unreal Tournament(tm) by Epic Games Inc. is easily one of the best networked

first person shooters ever. The game offers up to 16 players a chance decimate each

other in a futuristic combat arena. Players enter UT's 3D proving grounds and become

the combatant, taking control of a single character. While newer iterations of UT have

been developed since UT was released in 1999 (“Unreal” 1), see screenshots below, they

are primarily upgrades in technology. Unreal Tournament(tm) was chosen because it

features 3D graphics, networked play, and any AI is primarily centered around a single

entity.

 26

Figure 7 - Screenshot from Unreal Tournament

Figure 8 - Screenshot Unreal Tournament 2004

 27

3.1.3 Analyzing the Games

 Having selected a seemingly diverse pair of representative games, we can begin

the analysis process. By designing an architecture capable of supporting these two

dissimilar games, it is the hope of this thesis that the architecture can support the

development of just about any type of game. The analysis will pretty much follow the

standard software engineering practices for system development.

 The process b ts, which can be

done by treating the final game as the customer requirements. From the final game, use

cases can be derived and reviewed for further analysis. From that point, we can begin to

find the subsystem interactions that need to exist in the proposed design.

3.1.3.1 Analyzing Starcraft™ Requirements with Use-Cases

 The first part of analysis is to understand the requirements of the system we are

trying to build, or in our case merely understand. Since our requirements are based on a

finished piece of software, requirements and use-cases can be harvested from the game’s

manual and from playing the game itself. After a first pass of studying the manual and

actually playing the game, I came up with the following use case diagram:

egins with understanding the systems requiremen

 28

ud P la y

P la ye r

(fro m U se C a se Mo d e l)

Se le c t Obje c t

Cha nge M a p
Dis pla y Are a

Give unit a n orde r

Unit Cons truc t
Building

Building
c ons truc t Unit

Atta c k Unit

M ove to Loc a tion

Pa trol Loc a tion

Stop M ove m e nt

Hold Pos ition

Re s e a rc h
Te c hnology

M a nipula te P la ye r
Re s ourc e s

Ga the r Re s ourc e s

M a nipula te Obje c t
Re s ourc e s

« e xte n d »

« e xte n d »

« in clu d e »

« in clu d e »

« e xte n d »

« e xte n d »

« e xte n d »

« in clu d e »

« in clu d e »

« e xte n d »

« e xte n d »

« e xte n d »

« in clu d e »

« in clu d e »

« e xte n d »

« in clu d e »

« in clu d e »

Figure 9 - Playing Starcraft Use Case Diagram

 29

AIGraphics

User Interface Audio

Netw ork Game Logic

Game Data

Figure 10 - Logical Modules

Based on the details of the use cases in the diagram in Figure 9 above, we can begin

to identify the functional m

functionality is needed to render the game objects, the user interface functional module

ow the

gh

st

e

odules involved in the game of Starcraft™. 2D graphics

will capture the players input, and so on. While Figure 10 above is not meant to sh

physical separation of subsystems as a component diagram would, it does show at a hi

level what kinds of functionality are needed within the game Starcraft™.

 Before we begin analyzing the types of sub-system interactions that need to exi

in the system, however, we must first isolate which use-cases will be used to guide th

analysis. The final analysis of this game, located in appendix A, has very many use-

cases. Due to the time and scope constraints on this thesis, it would be impossible to

 30

fully explore them all. To ensure the research is still adequate I based the selections on

some very simple criteria.

 First the use-case must be fundamentally important to the game. Since our

original game title selection was based on each game being representative of many other

games, there is no point wasting time analyzing actions that don’t represent those other

games. Second, the use-case must require multiple sub-systems to collaborate. Since the

goal of this next phase is to understand logical module interactions, we can eliminate the

trivial use-cases. In all diagrams, use-cases selected for further elaboration have been

colored a light blue.

3.1.

cted multiple use-cases for further analysis we can begin trying to

understand the communication between logical modules required to realize those use

cases. Consider the Select Object use-case from Figure 12. “User left-clicks the mouse

button while the cursor is placed directly over a selectable object in the main view. The

selected object is marked with a green circle and is ready to receive orders.” In

applications using the “document/view” architecture, this use-case is almost trivial to

implement. The view receives the mouse click, determines which object was clicked

based on its screen coordinates, and sends the click event to the object for processing.

o draw a circle around itself or whatever.

 the

goal at the analysis phase is to understand the “kinds” of interactions, not how those

3.2 Understanding the Sub-System Interaction

 Having sele

The object can then decide t

At this stage we have not yet decided anything further about the architecture, so

the focus is not to design the interactions as in the document/view example. Instead

 31

interactions will actually be designed. Consider that same Select Object use-case

following a model-view-controller approach. The “kinds” of component interactions that

need to take place are still the same.

User Interface Game Logic Graphics Game Data

Player

(from G

//Capture Mouse Cl ick

//Receive notification of mouse cl ick

//Determ ine view the cl ick occurred in

//Calculate world coordinates of mouse cl ick wi thin view

//Get object that was cl icked on

//Perform game logic on object

ame Analysis View) (from Functional Modules) (from Functional Modules) (from Functional Modules) (from Functional Modules)

//Update object data

ence

 in routing mouse clicks to the

proper object. It does not necessarily mean the Game Logic system calls the graphics

system. Perhaps current screen position is part of the object data set by the graphics

system at a different time. The important thing to note is that in order to determine which

object was clicked, the UI and graphics systems are involved. Once all the important use

cases have been further analyzed to isolate the kinds of interactions we can begin creating

a potential design. To see other component sequences refer to appendix A.

Figure 11 - Select Object (Subsystem interactions)

 Figure 11 above shows an example sub-system interaction. The trick is to

understand that the diagram above is NOT the design. The “Select Object” sequ

diagram above shows that the graphics system is involved

 32

3.2 Identify Candidate Architectural Styles

The next step before we can design an architecture is to consider the architectural

styles that have already been shown to exhibit the quality attributes games requ

ire. In its

simp

ppear to have some of the desired quality attributes, and

will be reviewed.

 tends

 the

thesis.

 clients

tore is

lest form an architectural style is a set of components, their constraints, and the

constraints on their communication (Bass et al. 25). By incorporating well-understood

architectural patterns, we are more likely to achieve a hybrid design that will achieve our

goals.

Several architectural styles a

3.2.1 Layered

The layered architectural style divides system functionality hierarchical layers where

each layer provides services to the layers above and below it. The layered approach

to promote re-use by keeping the application specific code at the top most levels,

allowing developers to re-use the framework below (Duffy). Re-use is directly tied to

flexibility and modifiability requirements of this

3.2.2 Data-Centered

The data-centered style is essentially a centralized data store with independent

connecting to operate on the data. Data-centered styles offer an easy way integrate

different systems because the clients are independent of each other, and the data s

independent of the clients (Bass et al. 95-96)

 33

3.2.3 Independent Components

Independent processes communicating via messages define the independent

component architecture. Components register the kinds of information they can process,

s et al. 101-102). One interesting advantage of

the independent component styles is that all components need not exist. The decoupled

communication system is such that published messages may not have any subscribers. A

well-designed system could add and remove functionality at will.

se,

and are generally easy to maintain and expand (Calvert). By focusing on incremental

transformations of data, systems are very simple to understand and change. Systems can

be easily expanded or modified simply by plugging in new or different data processing

components (Bass et al. 96-97). The notion of effortlessly expanding games by

extending the chain of data processors is very appealing.

3.2.5 System of Systems

The system of systems architecture is the part of engineering work being done to

integrate multiple complex systems. The SoS approach is interesting because both games

and enterprise applications must integrate systems of entirely different domains.

Graphics, physics, AI, etc. are entirely unique domains being used together in a single

application. Another in that a system is

and communicate through messages (Bas

3.2.4 Data Flow

Data flow architectural styles like pipe and filter tend to offer a great deal of re-u

teresting aspect of SoS is the point of view

 34

eme

3.3 Architecture Design

At this point both games selected for study have been analyzed such that we have

descent understanding of what logical modules exist, and the kinds of interactions that

must occur to perform the game functionality. The next step is to actually determine the

overall system layout, and how the different subsystem interaction will occur. By

incorporating the various architectural styles noted in Section 3.2 of this thesis, we will

design an architecture that should meet the requirements we have laid out, as well as

ames.

3.3.1 Choosing a Topology

The first step to developing an architecture is deciding upon a topology. The

topology is the over-all layout of the system, and has significant impact in terms of

modifiability and reusability. The topology determines what logical systems are

connected; thereby setting what coupling may exist. The plan is to see how different

architectural styles can be applied to the logical modules in games, and determine the

affects it might have on the quality attributes the desired architecture requires. While

only one topology will be selected (or perhaps a hybrid of a select few) for further study,

rgent from the integration of the individual subsystems (“Definitions”). In other

words a game is the result of integrating an AI system, a physics system, etc.

Such a unique view matches one of our initial requirements of domain knowledge

localization. So if a graphics engine is a complete system, and the game is actually the

result of the graphics engine working with other systems, it may be possible to keep the

graphics details hidden from the game itself.

support the functional needs common to g

 35

those that weren’t selected may provide some ideas that can still be incorporated into the

final architecture.

3.3.

 and

d in the top-most layer. By localizing the game

specific logic to a single layer, new games can be created re-using the layers below.

1.1 Layered Architectural Style

The first major topology considered was the layered architectural style. The layered

architectural style tends to offer many quality attributes, of which re-usability

modifiability are most import to our goals. Looking at the simple diagram in Figure 12

below, the game specific code is localize

App or Game Layer

T echnology Layer

Data

Game Data

(from Funct al Modules)ion

AI

(from Functional Modules)

Audio

(from Functional Modules)

Graphics

(from Functional Modules)

Netw ork

(from Functional Modules)

Physics

(from Functional Modules)

User Interface

(from Functional Modules)

Game Logic

(from Functional Modules)

ility

Figure 12- A Simple Layered Architecture

The above “start” of an architecture has many problems that ultimately led to the

dismissal of this topology. First, while the architectural approach offers some re-usab

 36

between games, it does not appear to offer much re-usability between different types of

games (i.e. different technologies). This view of a layered approach doesn’t offer much

insight in how a developer might move from a 2D platform game, to a 3D first person

shooter. Such a change would require a very different graphics module, a very different

AI module, as well as requiring additional modu es that probably wouldn’t exist in a 2D

platform game (like physics).

Obviously this approach could be refined with layers further divided, but the

und e

es

3.3.1.2 Data Flow Architectural Style

great deal of flexibility in that data processors can be

added at will. The problem becomes very apparent, however, when you look at the game

different data. The data pipe connecting these logical modules would have to be so broad

amount of data that isn’t used (Calvert).

l

erlying problem still exists. It isn’t just the game code that is likely to change, but th

technology modules as well. Also due to the fact that different sets of logical modul

may be needed for different games, with potentially different module interactions,

perhaps layering does not isolate likely changes in the best possible way.

Data flow architectures offer a

modules in this layout (see Figure 13 below). Game components operate on very

that each module might spend significant overhead parsing and filtering out the large

 37

AI Audio

Game Logic

Graphics

Netw orkPhysics

User Interface

Figure 13- Data Flow

The the

architecture at the component level. Figure 14 below shows a simple example of how an

rchitectural style.

Unfo

 data flow architecture does, however, present some interesting options for

AI component could be implemented using the data flow a

rtunately this thesis is focusing on the architecture at the game system level, so this

concept will be left for future research.

 38

AI: General Offense Strategy AI: General Defense Strategy

AI: Unit Obj ectiv es AI: Unit Path Finding

AI: General Goals

tegrability. Functional modules are

less strongly coupled, but often at a cost in performance (Bass et al. 96). The data

centered approach minimizes many of the risks identified in the layered approach. First,

the logical modules do not have any direct interaction with each other mitigating the issue

of c phics

Figure 14- Data Flow at the Component Level (AI)

3.3.1.3 Data Centered Architectural Style

Another major topology of interest is the data centered architectural style. A data

centered approach is typically used to create data in

hanging technology. Changing from a 2D graphics logical module to a 3D gra

logical module should not break the workings of the other sub-systems.

 39

cd Data Centered

Audio

(from Functional Modules)

AI

Data

(from Functional Modules)

(from Functional Modules)

Graphics

(from Functional Modules)

Netw ork

(from Functional Modules)

User Interface

(from Functional Modules)

Physics

(from Functional Modules)

specific cod

Figure 15 – Data Centered

There is still the issue of modifiability at the game level. Figure 16 above does not

give any indication of how the developer can minimize the amount of change when

moving from one game to another. In the layered approach, game specific code was

localized to a single layer, making it easy for developers to move between similar game

projects, while the data centered topology doesn’t provide much insight as to how game

e could be localized. This issue will continue to be worked as the

architecture is further fleshed out.

 40

While using a data centered approach does offer many architectural benefits, it

drastically impacts how game functionality can be achieved. Consider the use case

diag is simple

he

ram shown earlier in Figure 11 - Select Object (Subsystem interactions). Th

act of clicking a button changes dramatically because there is no direct association

between the User Interface and Graphics logical modules. Both figures demonstrate t

same functionality, but the data centered topology has placed some constraints on the

way it can be realized.

Player

(from Game Analysis View)

User Interface

(from Functional Modules)

Graphics

(from Functional Modules)

Game Data

(from Functional Modules)

//Capture Mouse Cl ick

//Send mouse cl ick to object data system

//Get world coords of mouse cl ick

//Determine object under mouse cl ick

//Set object as selected

Figure 16 – Select Object (Logical Module Interactions – Data Centered)

3.3.1.4 Independent Components Architectural Style

itrary

A game using the independent component architectural style can have any arb

topology because of the style’s restrictions on communication. Regardless of the layout,

independent components remain decoupled because they communicate via messages

 41

rather than making function calls. The interesting aspect of this approach is compone

don’t know who they are sending to, and don’t necessarily need to wait for a response.

This not only means new components can be added/replaced, but partial systems can be

built with components missing. This means systems can be put together even before a

the components are built, greatly increasing the ability for individual components to

nts

ll

 be

independently developed.

Figure 17 below shows an example of how a game could potentially be put together

using the independent component architectural style. This rough sketch highlights some

of the strengths and weaknesses of this approach for a game system. The user interface

component as an independent component communicating via messages makes perfect

sense because user interactions really are asynchronous events. When you start to move

to how other components like graphics and AI interact with data, event based

communication makes less sense. Every cycle some game data must be drawn, must

perform AI, and must have some form of game logic applied to it. The overhead of

routing and translating messages becomes significant when the number of messages

approaches some threshold. Due to the sheer volume of data involved in games, and the

synchronous nature betw perhaps independent

components is not the best architectural style ain. It would, however, be an

 messaging overhead would affect

syst

een some of the subsystems and the data,

 for this dom

interesting research project to see just how much the

ems with synchronous interactions like games.

 42

Graphics

Game Logic

User Interface Game Data
Audio

AI

«mouse events»

«keyboard events»

«object makes sound events»

«mouse to graphical object action event»

«object requires game logic event»

«object requires thinking event»

«object thinking performed event»

«draw object event»

«object game logic performed event»

Figure 17- Independent Components

The qualities achieved by independent components should not be completely

discarded simply because this particular style may not be the best choice. The ability to

put together an incomplete system with components missing is a very useful idea.

Consider a development scenario where the graphics system has not been selected, or is

behind schedule. An incomplete game system consisting of the game logic, data, and AI

could continue to be worked. So even though one of the subsystems cannot be used, the

game as a whole can continue integration work.

3.3.1.5 System of Systems

The system of systems was rejected for the same reason the independent components

architectural style was rejected. Event based communication is just too inefficient for

some of the interactions. The time researching the system of systems perspective,

 43

however, was definitely not wasted. The notion that the desired system, a game in our

case

h

.

domains are just too different. Trying to design a universal data pipe for all the data

 like the correct approach. The analysis performed seems

to suggest that the data flow architectural st

technology. Part of reasoning behind this thesis is the belief that changing technology

, can be emergent as a result of the collaboration of other systems is a very

interesting idea (“Definition”). Just because the arbitrary topology and method of

communication are ineffective for this thesis, doesn’t mean the underlying idea can’t be

used.

3.3.2 Making the Topology Choice

Choosing a topology forms the structure from which the architecture will evolve. It

determines how systems can grow and change, and has significant impact on the qualities

the final architecture will exhibit (Bass et al. 105-107). The research has shown that

arbitrary topologies appear to place too much overhead on communication in order to

keep the subsystems truly independent, a key requirement for this thesis. Even thoug

performance was not one of the key requirements for this architecture, other approaches

are still able to meet the requirements without imposing such a high performance cost

The data flow architecture appears to not be the best choice because the logical

involved in games doesn’t seem

yle is just the not the best starting point for

the system level of abstraction.

The layered approach is more structured and could possibly provide better

performance than the other less structured topologies. The layered topology, however,

cannot easily abstract functionality in a way that minimizes the effects of changes in

 44

has a greater impact on work required and the level of modifiability, than the abil

swap out the coded gam

ity to

e logic. Game technology is moving at an astounding rate, and

gamers often only buy games with the latest technology. This means developers must

constantly upgrade the technology modules or suffer in sales. It would be possible to

place each logical system in its own layer, but doing so essentially emulates the data flow

architecture and all its problems.

Ultimately, the data centered topology was chosen for further analysis because it

showed the greatest mix of flexibility and performance. The other approaches may have

eristics, but had significant inherent disadvantages

that

oint

By moving forward with the data-centered topology this thesis is placing a higher

priority on providing flexibility in technology usage than on re-using an existing

fram

tered topologies as in Figure 18 below.

offered some truly desirable charact

 would be difficult to overcome. The data centered approach still allows for sub-

system independence, but allows a direct communication to the game data. At this p

it seems the data-centered layout offers the best chance at designing an architecture that

meets all of the proposed requirements.

ework. This prioritization is also matches one of the original goals for this thesis –

supporting COTS-based development. Modern game complexity is just too large for

single development house to create it all. An architecture design that supports easier

integration of COTS technology will likely better serve the industry. It should also be

noted that choosing to start from a data-centered topology does not necessarily restrict the

use of a different topology at a different level of abstraction. For example, it may be

possible to use both a layered and data cen

 45

App or Game Layer

Technology Layer

Technology Modules

+ AI
+ Audio
+ Graphics
+ Network
+ Physics
+ User Interface

(from Modules)

This layer is designed
using the data centered
topology

Game Logic

(from Modules)

entered

3.3.

unication

between clients and the data.

Figure 18 - Layered and Data-C

3 Choosing a Style of Communication

Once the overall topology of the logical modules has been created, the method of

communication must be designed. We have decided what modules can communicate, but

it has not been decided how that communication will work. Following with the data

centered topology there are two common models available for the comm

3.3.3.1 Repository

 The first is the repository model where data resides in a passive repository.

Because the data repository is passive, clients are responsible responsible for pulling the

 46

data and determining if it has changed. The repository is probably the simplest to

understand because the data store is essential a database answering queries.

The only real downside to this methodology is the increased traffic between a clie

and the data store. The client is requesting data for processing even if the data has not

changed.

nt

Figure 19 - Repository

3.3.3.2 Blackboard

The second common model for communication is the blackboard method. In this

model the data repository is active and sends update messages to clients informing them

of the updates to the data (Bass et al. 95). The blackboard methodology is an attempt at

reducing the amount of communication and as a form to keep the clients synchronized.

Shared Data

Client

Client

Client

Client

Client

 47

3.3.3.3 Making the Communications Choice

For the games domain the repository model was chosen because it makes the most

sense logically. First, the increased communication between the client and the data store

is less of a concern because both will likely reside on the same computer. Second, a

domain-specific module will need to operate on an object whether it's data has changed

or not. For example, a graphics engine will need to draw a visible object even if it's

position hasn't changed

 since the last time it was drawn. Lastly, the repository model

a meaning domain-

specific modules don't need to maintain local copies of the data.

we

e, since we have chosen not to use

the blackboard method of communication asynchronous methods of synchronization may

not be the best choice velopment already

use a method of “ticking” game objects, proving that games can be built using a

synchronous approach.

n to the next object. In other words an object performs AI,

also has the benefit of keeping all the data localized in the one are

3.3.4 Synchronicity

Synchronicity is how the data and control flow through the functional modules.

Because synchronicity is tightly tied to the topology and method of communication

have already eliminated some possibilities. For exampl

. Fortunately traditional approaches to game de

3.3.4.1 Synchrous at the Object Level

Synchronization at the object level is where all of the object's functionality is

completed before moving o

 48

draws itself, etc. then moves on to the next object. If you stick with the paradigm that a

game is just a bunch of game objects then this method makes sense.

3.3.4.2 Batch Synchronization

Batch synchronization is the case where a large group of objects are processesed

completely before moving on to the next group. A game example might be that all

objects perform their AI calculations before they are drawn. This approach starts to make

sense the more complex the specific functionality becomes.

sult in the

object performing AI, and making sound, while drawing the objects may be done as an

entire batch. This probably a result as games evolved. In early days, games were simple

enough that synchronization at the object level. As technology has grown more complex,

it's often easier to write an entire “engine” to perform things like graphical rendering as a

batch operation (Rollings 453-454).

3.3.4.4 Making the Synchronicity Choice

The choice to move ahead with batch synchronization was made for several

important reasons. First, synchronization at the object level using the data centered

topology with a passive repository does not make a lot of sense. Synchronizing at the

object level defeats the whole purpose of having functional modules operating

independently around a common data store. Having each functional module operate on

3.3.4.3 Hybrid Synchronization

 Current approaches to game development today often use a mix of synchronous

approaches at the object level and component level. “Ticking” an object may re

 49

the relevant objects and then moving to the next functional module does. Second, one of

the main reasons for this research is to deal with the fact the domain-specific processing

is becoming more and more complex. And as games are already beginning to see, it is

easier to handle complex calculations when operating as an “engine” performing a

specific type of functionality all at once.

3.4 The Idea – System of Systems Philosophy

Having performed a great deal of research in both games and software architecture I

have come to really like the system of systems philosophy. While the common concept

of SoS appears to have too many performance issues to make it viable for games, the

underlying idea is sound. The notion that that independent and complete systems are

collaborating and result in an emergent system is very powerful.

Designing a game as a collaboration of independent game subsystems has a great

deal of poten cies

rating the subsystems into a game

can

ibly

.

tial. First, development and test are simplified because dependen

between sub-systems are eliminated. Second, incorpo

potentially become much, much simpler. Because a logical module is a complete

system, the game is not using the module as a programming library with game specific

function calls. Instead the logical module is configured to behave as a system that will

result in what the desired game needs. So using a game subsystem becomes a matter of

configuring a system, rather than learning and using a domain-specific programming

API. The proposed architecture will attempt to incorporate this simple idea, and poss

create a new approach to developing games

4 THE PROPOSED ARCHITECTURE (and a Simple Design)

gam more as a data centered System of Systems (SoS). An

arch

on the

4.1 The Data-Centered System of Systems Topology

The architectural structure is represent below in Figure 19. Domain-specific systems

 of data. The domain-specific systems are

resp

The proposed architecture takes a step back from looking at games as a system of

e objects, and looks at them

itecture where external systems (graphics, AI, etc.) work together toward a common

goal, and the game is formed as the collaboration between those systems working

same data set. This chapter will present the architecture and a simple design using the

proposed architecture.

operate independently on a shared collection

onsible for requesting data to operate on, and update. Another issue to note, but will

be further explained, is the domain-specific systems can store domain-specific data

related to game objects within the common data store.

 51

id Da ta Cente red Sys tem of Sys tem s

Gra phic s
Sys tem

Phys ics
Sys tem

Artific a l
Inte llige nce

Sys te m

Ne tw ork
Sys te m

Use r Inte rfa ce
Sys te m

Audio Sys tem

Da ta

Figure 20 - Data Centered System of Systems

One nice feature of the design shown above is the minimization on dependencies.

Sub-systems no longer depend on each other, they can only work with data and by

working with the same data they are working with each other. Such decoupling should

mean that any sub-system could potentially be replaced or modified without breaking any

of the other components.

The concept presented in Figure 19 is definitely an interesting approach but it has

one fatal flaw that any gamer would immediately notice – speed. Games are expected to

run at very fast speeds, any thing less and arily dismissed as a

failure. The above design would suggest that each system processes on the whole of the

the product would be summ

 52

data. In an era where the data content of a single game can span multiple CDs, this is

obv

cally

ects in

ould benefit from some sort of spatial data organization or scene management.

By moving from a simple data store to a complete data management system we can move

back closer to the perform

iously not a feasible approach.

This brings us to the second major design decision – selective data processing.

Taking a page from existing game development knowledge, we know the mathemati

complex and time consuming graphics system doesn’t need to process all data obj

the game, only the objects in the player’s immediate area. In fact just about every sub-

system c

ance of existing game architectures (See Figure 20).

id Conc ept De s ign

Objec t
M a na gem e nt

Sys te m

Gra phic s
Sys tem

Phys ics
Sys tem

Artific a l
Inte llige nce

Sys te m

Ne tw ork
Sys te m

Use r Inte rfa ce
Sys te m

Audio Sys tem

Figur tems e 21- Intelligent Data System Centered System of Sys

 53

4.2

ty

nt

e.

t communications is actually preferable considering the performance

onstraints that exist in the games domain.

Architecture – System Communication

As shown in the analysis phase, system communication can be performed a varie

of different ways. Continuing with the system of systems idea, each domain-specific

component working with the object management component is actually an independe

system (see Figure 21 below). Since a complete system is composed of only two

components and single connection, a direct connection or function calls is acceptabl

Allowing direc

c

Domain Specific Component

Obj ect & Obj ect Management
System

Fig t

Allowing direct interface communication between a domain-specific component and

the object management system fortunately doesn’t have much impact in terms of

flexibility and expandability. All domain-specific components require virtually the same

 require lists of objects to operate on, and

the a

ure 22 – System Defined as a Domain-specific Component & the Object Componen

types of interactions with the data. They only

bility to read and write to those objects. As long as the design supports those kinds

of interactions, the system should remain easily modifiable and expandable.

 54

4.3 Architecture – Synchronization

Software architects might immediately notice that this architecture doesn’t support

much in the way of component synchronization. There is no direct communicatio

between domain-specific systems so there is no immediate way for one domain-specifi

component to tell another that i

n

c

t has modified data the other was using. In some

, but keep in mind this

architecture is for games. If for a single tick an object gets drawn even though the AI

system determined that it was killed, a player isn’t likely to even notice let alone care.

Synchronization does exist, but it is performed at the system level rather than the

object level. Unlike architectures where synchronization exists at the object level, it is no

longer enough to “tick” each object in the relative scene and trust that the object will be

drawn, act out its behavior, make sound, etc. Now each system must execute on the data

rate on all the relevant data and

then

application domains this could be a very serious problem

in turn. A master system must tell a component to ope

 signal the next component to do the same. (see Figure 22 below).

 55

id Tim ing

Us er Inte rface
Sys tem

Sys te m (Tic ke d) 1 . Tick U I Sys tem

Artific a l
Inte llige nc e

Sys tem

Obje c t

2 . Tick AI Sys tem

3 . Tick Ob ject Mg m t Sys te m

4 . Tick Au d io Sys tem Audio Sys tem

Gra phic s
Sys tem

Ne tw ork
Sys tem

M a na ge m e nt
Sys tem

5 . Tick N e tw o rk Sys te m

6 . Tick Ph ys ics Sys tem

Phys ics
Sys tem

7 . Tick Grap h ics Sys tem

Figure 23 - Ticking the Game System of Systems

rating on

s not plausible if the domain-

4.4 Architecture – Distributed Synchronization

It is important to note that the architecture assumes each component is ope

the same computer. This method of synchronization i

 56

specific systems resided on different platforms. This does not mean, however, that

distr

l

ibuted games cannot be developed using this architecture. In fact creating a

networked game is a simple expansion of adding a networking component to the loca

system.

System 2System 1

:Obj ects /
Data

:Obj ects /
Data

:Artificial
Intelligence

:Artificial
Intelligence

:Audio

:Audio
:Graphics

3D

:Graphics
3D

:Netw ork:Netw ork

:User
Interface

:User
Interface

Figure 24 – Example Peer to Peer Networked Game

 57

Server

System 2System 1

:Obj ects /
Data

:Obj ects /
Data

:Artificial
Intelligence

:Artificial
Intelligence

:Audio

:Audio
:Graphics

3D

:Graphics
3D

:Netw ork:Netw ork

:User
Interface

:User
Interface

:Obj ects /
Data

:Netw ork

:Artificial
Intelligence

Figure 25 -Example Client Server Networked Game

As you can see in Figures 23 & 24 above, t able of supporting

the

method of game synchronization. You’ll notice that the server system in diagram 24

above has not only a network component, but an AI system as well. This was added

because gam

he architecture is cap

 most common networking models. Game developers are free to create their own

es often use estimation logic in the server to keep clients reasonable

synchronized due to the fact that different clients have different quality of network

connections.

 58

4.5

ally

4.5.1 Support for COTS-Based Development

s.

Knowledge Localization

At this point it isn’t immediately discernable whether the architecture supports better

knowledge localization than other approaches. In one sense it does because the only

cross component communication is that of requesting objects to operate on, thus

removing the need for game developers to learn complex domain-specific APIs. On the

other hand, the object system must support domain-specific data in order for the

components to operate properly. We shall see a little later on that this concern can be

mitigated in the design phase.

4.5.3 System Flexibility / Modifiability

The architecture appears to be flexible. The data-centered topology allows for any

type of system to operate on the data, so seemingly any type of game could potentially be

Architectural Features / Architectural Requirements

The goal of the proposed architecture was designed to meet the requirements stated

earlier in Chapter One. While at this stage of the thesis it has not been proven that the

proposed architecture will meet all of the requirements, it does look promising. Actu

validating the architecture will be presented in later chapters.

The proposed architecture seems to support COTS-based development very well.

Functionality is separated and integration is reduced to a simple logical interface. As

long as the COTS component can request objects to process, and is capable of operating

on the object data, game systems should have little difficulty integrating external system

4.5.2 Better

 59

created. It is the developer’s choice of components and their functionality that

determines the type of game being produced. In later chapters this thesis will attempt to

more solidly prove that the proposed architecture supports this requirement.

4.5.4 System Expandability / Maintainability

The figures above represent potential game systems comprised of several

subsystems. While there is nothing wrong with the potential game design, the diagrams

don’t show one of the architecture’s greatest strength – expandability. The figures above

show one artificial intelligence system executing in a game, but there is no reason there

can’t be more. Consider the possibility of having one AI system that determines unit

strategy, while another performs path-finding from one location to another across a map

(see Figure 25 below).

Obj ect &
Obj ect

Management
System

AI System:
Unit Strategy

AI System:
Pathfinding

AI System:
???

...

Figure 26- Potential Design using many AI Systems

The architecture readily supports the ability for game designers to use any type and

number of subsystems they choose. This also promotes COTS development and re-use,

 60

since developers can easily re-use some of the more general subsystems, like path-findi

AI, across multiple games.

ng

4.6 A Simple Design

In order to verify the architecture is even feasible, a very simple design will be

created. The design is not intended to be the official starting point for games to begin

development from. It is simply meant to ensure that it is possible to create a game system

using the proposed architecture. Future research will include building better designs

using this architecture, but for this thesis simplicity is the only requirement.

 to

e object management system

to form a cohesive game system. Using the proposed data-centered approach there are

two kinds of interaction that are of interest. First is the interaction to attach an external

system to the object management system. It should be generic enough that any number

and type of component should be able to attach in a similar fashion. The second

important interaction is the actual reads and writes that take place between the object

system and an external system. The method of interaction must be generic enough that

all subsystems can use it, and flexible enough to support the different kinds of

interactions domain-specific components will need.

4.6.1 Potential Design: System Communication / Interaction

The architecture defines the topology of any design components, so the fist step is

determine how the individual systems will collaborate via th

 61

4.6.2 Potential Design Cont.: Attaching Systems at Compile Time

The abil nagement

system is critical to the architectural requirements for flexibility and expandability.

Because the details of the design are only interesting from an architectural feasibility

standpoint, the simplest design was taken and systems will connect to the object

component via semi-standardized interfaces (see Figures 26 & 27 below).

The approach below is definitely not the best but it does work. Domain-specific

systems require the object management system to implement a specific interface. The

domain-specific system will then communicate with the object system via that interface.

It is system expandable at compile time by having the object system implement a new

domain-specific interface and having the game system of systems attach the new domain-

specific system. This design is not too bad if the interface the object system is required to

implement is kept simple, which it will be.

ity to attach any type and any number of systems to the object ma

62

Obj ect & Obj ect

Domain Specific
Component

IDomainSpecificSystem

ConnectObjectSystem(IDomainSpecificObjectSystem)() : void

IDomainSpecificObjectSystem

«real ize»

Management System

«real ize»

Management Component
Figure 27 – Interfaces Required to Connect Domain-specific Component to the Object

Game System of
System

Obj ect & Obj ect Management
System

Domain Specific Component«interface»
IDomainSpecificSystem

//Create Object Management System

//Create Domain Specific System

ConnectObjectSystem(IDomainSpecificObjectSystem)()

ConnectObjectSystem(IDomainSpecificObjectSystem)()

Figure 28 – Example Sequence of Connecting a Domain-specific Component to the
Object Management Component

 63

4.6.3 Potential Design Cont.: System Communication

Continuing with the design presented above we need a design that provides a simple

and generic way for the domain-specific systems to interact with the object man

system. Fortu

agement

nately the interactions required is simply one of getting data objects for

dom

f

s

en provides the list of visible objects to draw. It

ight also receive a small view that states to draw the contained objects in the upper left

hand corner, and provides a list of GUI objects to draw.

An AI system, on the other hand, might only require a single view that allows the AI

system access to all the objects within 100-meter radius of the player, or perhaps a simple

list of computer controlled creatures. So while both the graphics and AI systems require

different lists of objects, the view / object-list approach is flexible enough to meet the

needs of both.

ain-specific processing. I’ve found that a view/object-list interface provides generic

enough access, and is flexible enough to meet the data access needs of the domain sub-

systems (see Figures 28 & 29 below).

Essentially each domain-specific system needs to request object lists or iterators o

objects to process. The view provides constraints and a context for the object list. For

example, a graphics engine requires lists objects that should be drawn. In order to do thi

the graphics engine might receive a view that provides context stating these objects

should take up the whole screen, and th

m

 64

Domain Specific
Component

Obj ect & Obj ect
Management System

«interface»
IDomainSpecificObjectSystem

+ getDomainViews() : DomainViewIterator

«interface»
IDomainSpecificSystem

+ ConnectObjectSystem(IDomainSpecificObjectSystem) : void

«interface»
IDomainView

+ getDomainSceneObjectManager() : IDomainSceneObjectManager

«interface»
IDomainSceneObjectManager

+ getDomainProcessableObjectIterator() : IDomainProcessableObjectIterator

«interface»
IDomainProcessableObjectThe Domain Specific System

knows how to process objects this
interface.

«real ize»«real ize»

Figure 29 – Interfaces Required for Domain-specific System To Request Objects to
Process

 65

Domain Specific
Component

Obj ect & Obj ect
Management System

«interface»
IDomainSpecificObj ectSystem

«interface»
IDomainView

«interface»
IDomainSceneObjectManager

DomainViewIterator:= getDomainViews()

DomainViewIterator:= getDomainViews()

IDomainSceneObjectManager:= getDomainSceneObjectManager()

getDomainSceneObjectManager()

IDomainProcessableObjectIterator:= getDoma rocessableObjectIterator()inP

getDomainProcessableObjectIterator()

Process the Objects

 of

ne of the initial architectural requirements is to support domain knowledge

localization. For example, the graphics system contains a great deal of domain data like

mesh and animation structures that is directly related to the game objects in the object

management system. The designer of the object management system and even the game

specific objects should not need to know about those domain-specific details. A game

developer should care that a game object is “attacking”, not necessarily that a specific

graphics engine, with specific class objects is being used to represent the attack visually.

 One possible solution to this problem is the observer design pattern (Bass et al). If

objects in the object management system had the generic capability to attach and retrieve

observer objects, domain-specific systems could attach domain-specific data for

processing without the object system needing to understand the data. Figures 30 and 31

Figure 30 – Example Sequence of a Domain-specific System Requesting Objects to
Process

4.6.4 Potential Design Cont.: Observer Pattern to Achieve Localization

Domain Knowledge

O

 66

below show a simple example of how a simple object can be expanded to contain

domain-specific data without the game object creator needing to understand the specific

domain. So for example, the graphics engine could attach an object that contains the 3D

mesh, a skeleton, material information etc. as an attached object, and the game object

need never know it contains graphics specific information.

Domain
Specific

Component

Obj ect &
Obj ect

Management
System

Generic Game
Obj ect Class

Domain
Specific Data

Class

Request My Domain Observer Object

Attach Observer Object

Request Objects Required to Process

Figure 31-Potential Design using a Domain Observer Object

 67

If object has not been domain processed before

Domain Specific
Component

Obj ect & Obj ect
Management System

Generic Game
Obj ect Class

Domain Specific
Data Class

//Request Objects to Process

//Return l ist of Game Objects for processing

//For each object

Has object been processed before?

//Construct

//Attach domain data as observer

//Request Attached Domain Data

//Process Domain Data

Figure 32-Potential Sequence using a Domain Observer Object

e

e functionality.

The next validation technique used in this thesis is to build a prototype system using

the proposed architecture and confirm that the original goals and requirements have been

met. Obviously building a commercial quality game like Starcraft™ or Unreal

Tournament™ are beyond the scope of this thesis, but building a prototype that offers a

subset of functionality can be created in a reasonable amount of time. The prototype

system should demonstrate each of the original architectural requirements.

5.1 Taking the Reference Games to the Design Level

5.1.1 Applying the Design

The first step in proving the architecture is sound, is proving the architecture can at

least support the functionality it was designed for. Carrying the original game analysis to

the design level should show that the games could have been built using this architecture.

This step will not, however, show if the architecture would work well for the given game

appl

5 ARCHITECTURE VALIDATION

The next step in developing the architecture is to verify to a reasonable degree that

the architecture supports the functionality for which it was intended. The first approach

is to apply the architecture and take the reference games past the functional level to th

design level. This should prove to a fair degree of certainty that the architecture still

supports the different gam

ication. The architectural qualities will be left for the prototype to demonstrate.

Before we can carry on to software design, the original analysis artifacts must be

reviewed to see how the proposed architecture affects our understanding of the game.

Going back to the “Play Starcraft” use case diagram in Figure 9, there is one major

 69

prob player

can perform, it is still incomp The

reason is the timing model fo

application.

l

to the system and the system slightly different, however, in

that

game of Starcraft™ and neve other command, the game will still play. The

com tra e game

will clock as

an actor, the transactional use-case approach should still be sufficient for capturing the

functional requirements in our design.

lem that needs to be solved. While it appears to capture the activities a human

lete for trying to understand how games really play.

r games is very different than the typical software

Most literature proposes use-cases to capture the interactions between actors externa

being developed. Games are

 the player does not initiate all forms of interactions. For example, if a player starts a

r enters an

puter AI will process s tegies, units will move and behave, and ultimately th

 continue without the player. By bending the rules slightly and treating the

 70

ud Tic k

(fro m Tick U I C o m p o n e n t)

Tic k Us e r
Inte rfa c e

(fro m Tick A I Syste m)

Tic k AI Sys te m

(fro m Tick Ob je ct C o m p o n e n t)

Tic k Obje c t S ys te m

Sys te m
(Tic k e d)

(fro m U se C a se Mo d e l)

Tic k Ga m e Sys te m

(fro m Tick N e two rk C o m p o n e n t)

Tic k Ne tw ork
S ys te m

(fro m Tick Au d io S yste m)

Tic k Audio S ys te m« in clu d e »

« in c lu d e »

(fro m Tick Gra p h ics Syste m)

Tic k Gra phic s
S ys te m

« in c lu d e »

« in clu d e »

« in clu d e »

« in clu d e »

Figure 33 - Tick Game System Use Case

o

 33

By looking at the original use-case list in Figure 9 in terms of how they would break

out in terms of the timing use-cases in Figure 32, we can start to understand how the

logical subsystems might implement the game functionality. From here we can begin t

break down the use case and assign portions of it to the various sub-systems. Figure

 71

below shows a possible use-case breakdown of the “Tick Graphics System” use-case

the game Starcraft™.

for

Update Command

Tick Graphics
System Update All Views

Button View

Update Main View

Update Mini Map
View

Update Protrait
View

Update Status
View

Draw Main View
Terrain

Draw Main View
Objects

Update View Update View
Object«include»

«extend»

«extend»

«extend»

«extend»

«include»

«include»

«extend»

«include»

«include»

«include»

«include»

«include»

«include»

e

own to the

e

Figure 34 – Tick Graphics System

Selected use cases are then further expanded similarly to what was done during th

analysis phase, only this time the simple design is used. Use cases are driven d

system interactions, which are then further driven down into the actual interfaces

involved (see Figures 34 and 35 below). At the end of this we have not only validated

that the analyzed games could be like be built on the proposed architecture, but we hav

further defined the interfaces which will be useful for the prototype effort. For the

detailed designs of Starcraft™ and Unreal Tournament™ see appendix A.

 72

System (Ticked) Graphics 3D Obj ects / Data

//T ick Graphics System

//Update View

//Get View

//Get Objects in View

//Draw the objects

(from Game Analysis View)

Figure 35 – Update View Component Sequence

 73

Ga e Systemm Graphics Component Object System

:CDemoApplication «interface»
:IGraphicsSystem

:CGraphicsSystem :CGraphicsViewProcessor

(from Update View) (from Update View) (from Update View)

«interface»
:IGraphicsObjectSystem

(from Update View)(from Update View)

«interface»
:IGraphicsView

(from Update View)

Create a new view processor if this
view does not yet have an Graphics
View Processor attached.

:CGraphicsProcessorObject «interface»
:IGraphicsSceneManager

«interface»
:IProcessableGraphicsObject

«interface»
:I2DSpriteGraphicsObject

(from Update View) (from Update View)(from Update View)

Create Graphics Object
Processor Object i f
necessary.

Author: Jeff Plummer
Version: 1.0
Created: 11/9/2004 1:45:32 PM
Updated: 11/9/2004 1:47:52 PM

Name: Design: Update View (Class-Interface Sequence)

The simple design is NOT presented as THE DESIGN TO USE for
this architecture. It is merely a simple implementation of this
architecture.

(from Update View)

«interface»
I2DGraphicsObject

gsTickGraphicsSystem(tDiff)

gsTickGraphicsSystem(tDiff)

IGraphicsViewIterator*:= gsGetGraphicsViews()

IGraphicsViewProcessor*:= gsGetGraphicsViewProcessor()

CGraphicsViewProcessor(pView,pScreen)

gsAssignGraphicsViewProcessor(viewProc)

processView()

IGraphicsSceneManager*:= gsGetSceneManager()

IGraphicsObjectIterator*:= gsGetGraphicsObjects()

IGraphicsProcessorObject*:= gsGetGraphicsProcessorObject()

CGraphicsProcessorObject(pObject)

gsAssignGraphicsProcessorObject(procObj)

IStringIterator*:= gsGetGraphicsResources()

//Create 2D Sprite

drawGraphicsObject()

point2f&:= gsGetWorldPosition()

point2d&:= gsCurrentImageOffsetInResource()

//Draw the object using SDL

Figure 36 – Update View – Classes and Interfaces

5.1.2 Evaluating the results of applying the d

esign

Before we analyze the results of this exercise it’s important to truly understand the

goals t

these types of games could be built using this architecture. The resulting artifacts do not

give any insight as to how well the architecture fits the games domain. The artifacts also

are design dependent, so the level of com

individual systems operating on the same data was a bit of a paradigm shift from what is

. Moving the selected games down to a design level was performed to verify tha

plexity in these representations is more a

reflection of the quality (or lack thereof) of the design, and not the architecture.

Overall it would appear that the architecture can support the two selected games, and

therefore arguably supports many types of games. Using the proposed architecture it was

possible to design the kinds of functionality required for both games. The idea of

 74

commonly seen in game development literature, but the shift was not so large to make

difficult transition.

it a

5.2 Developing a Prototype

In an industry where changing people’s perceptions of software engineering is so

difficult, a paper analysis of the architecture is not likely to change anyone’s development

habits. A tangible prototype that can demonstrate the architectural qualities in a game-

like application is far more likely to have an impact. A prototype will also more

concretely prove the quality attributes this architecture purports to have.

5.2.1 Prototype High Level Design

An effective prototype for this thesis needs to meet certain criteria. First the

prototype must have game-like functionality. It should demonstrate some of the same

kinds of capabilities that exist in games. Second it should demonstrate all of the

architectural re though

performance was not one of the architectural ents, the prototype should execute

 application that meets such criteria should be able to

answ e

 task in developing the prototype is deciding which systems to model and

buil

quirements stated in Chapter One of this thesis. Lastly, even

 requirem

at speeds reasonable to games. An

er a great many of the questions likely to arise from people familiar with gam

development.

5.2.1.1 Component Selection

The first

d. In order to best demonstrate the architecture’s support of our defined

requirements, most notably flexibility and expandability, only a few domains will be

 75

developed. AI and graphics seem the logical choice and should offer ample opportunit

to flex and expand.

y

Game Obj ect System

(from Systems)

AI System

(from Systems)

AI2System

(from Systems)

Graphic 3D System

(from Systems)

Graphics 2D System

(from Systems)

Figure 36 above shows the logical systems that will be built for the prototype. The

prototype should show flexibility in the way the “game” can be assembled using any

combination of these components. It should also demonstrate expandability because

moving from a 2D graphics system to a 3D graphics system is a logical upgrade.

Game Object System

Figure 37 – Prototype Subsystems

 - This component acts as the data store that all other

systems will interact with. It is also responsible for

ain systems will

operate on.

organizing the list of objects the dom

76

AI System - This is an extremely trivial intelligence system that will

tell objects to move around.

AI2System - This is another trivial intelligence system that tells objects

to rotate.

Graphics 2D System - A 2D graphics system that renders sprite objects.

Graphics 3D System - A 3D graphics system that renders 3D objects.

r this prototype. This example design

sed. For example, when the 2D graphics

system requests an object position as a point2d (structure of two integers) the object can

simple simply return integer typecasts of the x & y aspects of its point3f (structure of 3

floats) location. So in essence when the AI system modifies the position data, it’s

modifying the position data that all the components use.

5.2.1.2 The Object Data

The next step is to identify the object data that each system uses to operate on.

Figure 37 below shows the object data required fo

also shows how a single data set can be re-u

 77

«interface»
IGraphics3DObject

+ gs3dGet3DObjectGraphicsResource() : String

+ gs3dGet3DObjectOrientation() : point4f
+ gs3dGet3DObjectLocation() : point3f

GameObj ect

- m_s3DObjectResource: String

- m_3fObjectPosition: point3f
- m_4fObjectOrientation: point4f

- m_s2DObjectResource: String

«interface»
IGraphics2DObject

+ gs2dGet2DObjectGraphicsResource() : String

+ gs2dGet2DObjectOrientation() : float
+ gs2dGet2DObjectLocation() : point2d

«interface»
IAIObject

+ aisGetObjectLocation() : point3f

«interface»
AI2Object

+ ai2sGetObjectOrientation() : point4f

«real ize»«real ize»

«real ize»«real ize»

ply to ensure that we understand what data the attaching systems will

manipulate.

5.2.2 Protot

ell as

Figure 38 – Analysis of Object Data Required

While this prototype diagram suggests that the object implements interfaces from the

various systems, that is a design choice not an architectural requirement. Other designs

may use other (possibly better) methods of interacting with the data in the object. Our

purpose here is sim

ype Detailed Design

The prototype system will follow the design proposed earlier in Chapter 4. We will

soon see it is not the best possible design, but it is simple to understand and adequate for

our uses. Components will request views (a view is really just a list of objects as w

 78

some context information), and then process the objects in that view. So for example

when a graphics component requests a view, the object system would provide a view th

contains the list of likely visible objects.

at

The design also uses domain-specific observer objects to be attached to the data

objects. This allows the domain-specific system to attach domain data to the object

without the object component requiring any kind of special understanding of the domain

data. As stated before, this design feature was added to provide for knowledge

localization.

5.2.

nent

tem to the domain-

specific system, thus keeping the complexities of the domain hidden entirely from the

developer. The other set of interfaces are to allow the domain-specific component to use

the object system. At its simplest, these interfaces are ONLY for requesting views and

access to certain object attributes (see Figure 38 below).

2.1 Component Interfaces

The simple design uses interfaces to facilitate communication between the domain-

specific system and the object management system. Each domain-specific compo

will present two kinds of interfaces. One set of interfaces the domain-specific system

will implement and present to the game maker / object management system. At its

simplest, these interfaces are ONLY for connecting the object sys

 79

Interfaces the Obj ect System can use to communicate w ith the Graphics3D System

+ IGraphics3DProcessorObject
+ IGraphics3DSystem

Interfaces The Obj ect System Implements

+ IGraphics3DCamera
+ IGraphics3DCapableObject
+ IGraphics3DObjectSystem
+ IGraphics3DProcessableObject
+ IGraphics3DSceneManager
+ IGraphics3DView
+ IGraphics3DViewProcessor

Figure 39 - Example: Graphics3D System Interfaces

attach an

obje

g

ystem. They are

left empty for this demo because one goal of this demo is to demonstrate that game

systems can be assembled without the game developer using any of the domain-specific

functionality. Virtually all domain-specific systems will present a nearly identical set of

interfaces using this design.

In keeping the goal of knowledge localization, the interfaces the domain system

presents to the game maker are trivial. In the example below in Figure 39, the

IGraphics3Dsystem interface provides mechanisms for the game maker to

ct system, configure, and “tick” the system. The IGraphics3DprocessorObject and

IGraphics3DViewProcessor are the interfaces to allow the domain-specific system to

attach observers to a data object and view respectively. Such interfaces could also

potentially provide the object and view access to domain-specific functionality, allowin

game developer to play with the nuts and bolts of the domain-specific s

 80

«interface»
IGraphics3DProcessorObject

+ «pure» release3DProcessorObject() : void

«interface»
IGraphics3DSystem

+ «pure» gs3dConnectObject3DSystem(IGraphics3DObjectSystem*) : void
+ «pure» gs3dConfigureAndStartGraphics3DSystem(int, int, int, bool) : void
+ «pure» gs3dTickGraphics3DSystem(float) : void

«interface»
IGraphics3DViewProcessor

+ «pure» release3DViewProcessor() : void

The interfaces the domain-specific system places on the object system to implem

are equally trivi

Figure 40 – Interfaces Into the Graphics 3D System

ent

al. The IGraphics3DObjectSystem interface allows the graphics system

to retrieve views. The IGraphics3DView provides access to the objects that should be

considered for drawing, as well as context information like the camera and view

rectangle. F

ally

inally the IGraphics3DProcessableObject interface allows the graphics

system to attach an observer, and allows access to the data the graphics system is

interested in. And just as before, virtually all domain-specific systems can use a virtu

identical set of interfaces using this design.

 81

«interface»
IGraphics3DCamera

+ «pure» gs3dGet3DCameraLocation() : point3f&
+ «pure» gs3dGet3DCameraLookAt() : point3f&

«interface»
IGraphics3DObjectSystem

+ «pure» gs3dGetGraphicsViews() : IGraphics3DView Iterator*

IGraph

IGraphics3DProcessableObject

ics3DCapableObject
«interface»

+ «pure» gs3dGetGraphics3DProcessorObject() : IGraphics3DProcessorOb
+ «pure» gs3dAssignGraphics3DProcessorObject(IGraphics3DProcessorOb

+ «pure» gs3dGetGraphics3DResources() : IStringIterator*
+ «pure» gs3dGet3DObjectLocation() : point3f&
+ «pure» gs3dGet3DObjectOrientationAsQuaternion() : point4f&

ject*
ject*) : void

+ «pure» gs3dGetGraphic3DInterfacesImplemented() : unsigned int

«interface»
IGraphics3DSceneManager

+ «pure» gs3dGetVisibleGraphics3DObjects() : IGraphics3DObjectIterator*

«interface»
IGraphics3DView

+ «pure» gs3dGetGraphics3DViewProcessor() : IGraphics3DViewProcessor*
+ «pure» gs3dAssignGraphics3DViewProcessor(IGraphics3DViewP
+ «pure» gs3dGet3DSceneCamera() : IGraphics3DCamera*
+ «pure» gs3dGetViewRect() : iRect*
+ «pure» gs3dGetSceneManager() : IGraphics3DSceneManager*

rocessor*) : void

+ «pure» gs3dGetSubViews() : IGraphics3DViewIterator*
+ «pure» gs3dGetEnabledInterfaceFlagsForView() : unsigned int

Figure 41 – Interfaces the Object and Object Management System Must Implement in

ject System Interactions

 at

ou “tick” the domain-specific system.

The combination of “ticking” all the domain systems should result in the game system.

5.2.

n

m simply passes a reference to the object component to the

grap

order for the Graphics 3D Component to Use it.

5.2.2.2 Domain-specific System – Ob

This simple design requires only two types of system interaction. The first occurs

system creation time where the domain-specific system is connected to the object system.

The second is the interaction that occurs when y

2.2.1 Connecting Domain System to the Object System

The simple design used in this prototype connects the individual systems via

interfaces. This extremely simple interaction provides the domain-specific component a

interface to use to communicate with the object system. Figure 41 below shows an

example of how the syste

hics 3D component. Once the domain-specific component has the interface to the

data it can process the data via the “tick” command.

 82

CDemoApplication Root CGraphics3DSystem«interface»
IGraphics3DSystem

Name: Design: Ini tial ize Graphics 3D System (Class-Interface Sequence)
Author: Jeff Plummer

Created: 11/8/2004 9:46:13 AM
Updated: 11/8/2004 10:21:34 AM

Version: 1.0

The OGR

loading capabi l i ties.

E graphics engine used
in this demo has graphics resource

The simple design is NOT presented as THE DESIGN TO USE for
this archi tecture. It is merely a simple implementation of this
architecture.

Root(resourceConfigFi le)

CGraphics3DSystem(resourceConfigFi le)

setupResources(resourceConfigFi le)

IGraphics3DSystem*:= createGraphics3DSystem(objectSystem,xSize,ySize,bi ts,ful lScreen)

gs3dConfigureAndStartGraphics3DSystem(xSize,ySize,bi ts,ful lScreen)

gs3dConfigureAndStartGraphics3DSystem(xSize,ySize,bi ts,ful lScreen)

gs3dConnectObject3DSystem(objectSystem)

gs3dConnectObject3DSystem(objectSystem)

phics3D Component

system

pdate the data in

the o

Figure 42 – Connecting the Object Component to the Gra

5.2.2.2.2 “Ticking” the Domain-specific System

“Ticking” the domain-specific system is where the real work is done. The

tells the domain-specific component to synchronize and process the data in the object

management component. To do this, the domain-specific component will request views

and object lists to process, perform domain-specific functionality, and u

bject management component. The simple prototype design uses interfaces to

perform this and an example can be seen below in Figure 42. See Appendix B for the

complete prototype design.

 83

Game System Graphics Component Object System

:CDemoApplication

(from Tick Graphics System)

«interface»
:IGraphicsSystem

(from Tick Graphics System)

:CGraphicsSystem

(from Tick Graphics System)

«interface»
:IGraphicsObjectSystem

(from Tick Graphics System)

:CDemoGameObjectSystem

(from Tick Graphics System)

:CGraphicsViewProcessor

(from Tick Graphics System)

«interface»
:IGraphicsView

(from Tick Graphics System)

Create a new view processor if this
view does not yet have an Graphics
View Processor attached.

«interface»
:IGraphicsSceneManager

(from Tick Graphics System)

:CDemoObjectSceneManager

(from Tick Graphics System)

«interface»
:IProcessableGraphicsObject

(from Tick Graphics System)

:CGraphicsProcessorObject

(from Tick Graphics System)

:CTriangleGameObject

(from Tick Graphics System)

Create Graphics Object
Processor Object if
necessary.

Name: Design: Tick Graphics System (Class-Interface Sequence)
Author: Jeff Plummer
Version: 1.0

reated: 11/8/2004 2:46:26 PMC
Updated: 11/9/2004 1:45:03 PM

The simple design is NOT presented as THE DESIGN TO USE
this architecture. It is merely a simple implementation of this
architecture.

 for

:CDemoMainView

(from Tick Graphics System)

This Graphics system when ticked causes
the game objects to be drawn in 2D as a
sprite.

«interface»
:I2DSpriteGraphicsObject

(from Tick Graphics System)

«interface»
I2DGraphicsObject

gsTickGraphicsSystem(tDiff)

gsTickGraphicsSystem(tDiff)

IGraphicsViewIterator*:= gsGetGraphicsViews()

GraphicsComponent::IGraphicsViewIterator*:= gsGetGraphicsViews()

IGraphicsViewProcessor*:= gsGetGraphicsViewProcessor()

GraphicsComponent::IGraphicsViewProcessor*:= gsGetGraphicsViewProcessor()

CGraphicsViewProcessor(pView,pScreen)

gsAssignGraphicsViewProcessor(viewProc)

gsAssignGraphicsViewProcessor(viewProc)

processView()

IGraphicsSceneManager*:= gsGetSceneManager()

GraphicsComponent::IGraphicsSceneManager*:= gsGetSceneManager()

IGraphicsObjectIterator*:= gsGetGraphicsObjects()

GraphicsComponent::IGraphicsObjectIterator*:= gsGetGraphicsObjects()

IGraphicsProcessorObject*:= gsGetGraphicsProcessorObject()

GraphicsComponent::IGraphicsProcessorObject*:= gsGetGraphicsProcessorObject()

CGraphicsProcessorObject(pObject)

gsAssignGraphicsProcessorObject(procObj)

gsAssignGraphicsProcessorObject(procObj)

IStringIterator*:= gsGetGraphicsResources()

GraphicsComponent::IStringIterator*:= gsGetGraphicsResources()

//Create 2D Sprite

drawGraphicsObject()

point2f&:= gsGetWorldPosition()

GraphicsComponent::point2f&:= gsGetWorldPosition()

point2d&:= gsCurrentImageOffsetInResource()

GraphicsComponent::point2d&:= gsGetImageOffsetInResource()

//Draw the object using SDL

Figure 43 – Prototype Sequence: Tick Graphics2D System

antic

 in notably different “game” behavior.

For expandability, the “game” could quickly move from 2D to 3D by attaching a new

graphics engine. In terms of domain knowledge localization the game specific objects

5.2.3 Prototype Evaluation

Designing and building the prototype was a much larger task than originally

ipated, but it was definitely worth the effort. First and foremost it proved the

architecture definitely has potential. The prototype not only demonstrated the original

quality requirements but it uncovered several issues that had not previously been

considered.

In terms of flexibility, the prototype demonstrated the ability to attach and remove

AI components quickly and easily, and resulted

 84

had no domain knowledge about the components that would use them. The game

deve ic

me very simple interfaces and required no understanding of the inner

workings of other systems.

loper merely had to implement simple data access interfaces, and domain-specif

data was hidden as an attached observer object. Lastly, the prototype did prove the

architecture supports COTS based development. The domain-specific components were

separate by so

Figure 44 – Screenshot1 from Prototype

Figure 45 - Screenshot 2 from Prototype

6 RESULTS

es

will be required to continue to grow in terms of size and complexity. In order for

deve

 framework

ame makers can spend more of their

time

n

erging field of software architecture is

ge

com

he

s. The resulting artifacts presented a

uality understanding of the kinds of functionalities and interactions that can occur in

modern day games. Then came the task of finding architectural styles that offer a nice fit

As technology advances and consumers demand the latest features, electronic gam

lopment houses to keep costs low, certain realities must be faced. Games can no

longer be coded entirely from scratch. The total cost in terms of time and resources will

soon reach a point making games an infeasible venture. This thesis has proposed an

architectural solution that could help mitigate this problem by moving games to a

common COTS architecture. By allowing developers to “assemble” the game

in a flexible manner from technology components, g

 focusing on the more game specific aspects.

6.1 Summary

Electronic games are making incredible advances in terms of technology and

complexities. Unfortunately almost all-available literature on the subject of games only

tends to keep pace with the technology advances, leaving developers to devise their ow

solutions for managing the complexities. The em

an area of research that has been shown to drastically impact the development of lar

plex systems. By using the knowledge found in software architecture and applying it

to the games domain, we can begin to fill the gap that is left by current literature.

In order to design a quality domain-specific architecture, a solid understanding of t

games domain needed to be acquired. Such insight was achieved by analyzing existing

games using standards software engineering practice

q

 86

for those kinds of interactions. The resulting research also sparked a profound interest in

the sys s applied

e for the games domain. The proposed architecture was defined as using a

data-centered topology, a direct method invocation for communication, and using a

system “tick” for synchronization. The game system emerges as a result of multiple

independent systems working on the same data set. A simple design was then created

that could be used for the remaining analysis.

After building a simple design it was time to begin analyzing the architecture. The

first method of analysis was to carry the selected games for analysis down to the design

level. This should verify if the architecture is at least capable of support the analyzed

games and by implication capable of supporting many other types of games. In order to

determine how well the architecture would support games the simple design was used in

a prototype system. The prototype was then used to demonstrate the quality attributes of

the architecture.

6.2 Conclusions – Meeting The Architectural Requirements

The proposed architecture definitely shows promise for use in the games domain. It

appears to support the functionality required in a diverse set of electronic games, and it

appears to support them quite well. The architecture allows for a great deal of flexibility

and expandability by supporting any number of a wide variety of domain-specific

tem of systems philosophy. Weighing the pros and cons for each style a

to the domain resulted in a solid knowledge base for designing an architecture that could

meet the needs of the games domain.

The next phase was to actually use all the acquired knowledge and design an

architectur

87

systems. The architecture also suppo sed development approach, and the

easy integration of those components. All in all the architecture seems to offer a great

deal of ben

6.2.1 Support COTS-Based Development

The proposed architecture prom inating

dom ain-specific components can only

communicate with the o

exists com

This arch bly of

the prototype. During developm to

create a fully dem system. During prototype assembly, the

prototype components can be plete

independence of the individual com

integrate in a near identical fa

6.2.2 Bet

The pr dge

awa nt

of domain per must understand in order to use a game

com re time to focus on the

game speci

e to

add this at n that used

rts the COTS ba

efits over the more ad-hoc, tightly coupled designs used today.

otes COTS-Based development by elim

ain-specific component communication. Dom

bject component, and together form an independent system that

pletely independent of any other system.

itectural requirement was verified during the development and assem

ent, components required only a simple object system

onstrable and testable

added and removed at will, demonstrating the com

ponents. The domain-specific components also

shion simplifying their integration.

ter Knowledge Localization

oposed architecture also supports the ability to localize domain knowle

y from the game developer. By eliminating, or at least greatly reducing, the amou

knowledge a game develo

ponent properly, we are effectively giving the developer mo

fic aspects of the code.

While such a feature is not immediately inherent in the architecture, it is possibl

the design level. This thesis expanded the architecture to a desig

 88

the observer design pattern to attach domain-specific data to a game object. In the

pro xample,

the only 3D says

wh at is needed to render that

resource is he game developer.

6.2.3 Flexibility / Modifiability

Flexibility and modifiability are important to allow developers to re-use components

in a wide variety of games. So by investing money in an expensive piece of domain-

specific technology, the developer has not severely limited the kinds of games he/she can

make. The proposed architecture is flexible enough to allow developers to mix and

match components allowing them to assemble almost any possible game.

This architectural requirement was demonstrated by both the reference games and

the prototype. Both very different reference games were able to be designed using the

proposed architecture, strongly suggesting the architecture can support a wide variety of

games. The prototype also demonstrated flexibility in that attaching different domain-

specific components resulted in a variety of “game-like” applications.

6.2.4 Exp

Expan d

costs down etter quality upgrade. Iterative game

inca

should not te redesigns. The proposed architecture supports this capability

totype, the game specific objects have very little domain-specific data. For e

 Graphics specific piece of data the object component has is a string that

at 3D graphics resource to use. All the underlying data th

 attached as an observer, and is effectively hidden from t

andability / Maintainability

dability and maintainability are important in keeping development time an

, and should ultimately result in a b

rnations are most often technology upgrades with minor tweaks in game play, and

require comple

 89

by keeping h other, allowing

chnologists to upgrade each system without breaking the other functionality.

in a few different ways. First, as stated

in meeting nt of each other

llowing technologists to modify components without breaking others. Second, the

rototype shows expandability by demonstrating technology upgrades by swapping in

entirely different systems. The prototype application was able to make the technology

upgrade from a 2D graphics system to a 3D graphics system by simply attaching a

different component. Lastly expandability is supported by the architecture in much the

same way it supports flexibility - systems can be expanded by simply adding a new

component.

6.2.5 The Performance Concern

Although Performance was not an official requirement of this architecture because

the assumption that most the performance issues reside inside the components, it is

definitely something game developers would be concerned about. Reviewing the

prototype and the simple design, it appears as though this architecture has very little

impact compared to the more monolithic designs presented earlier.

First the architecture allows for direct interface invocation, not requiring any

message-handling overhead (although the architecture does not preclude the use of using

messages as the method of communication). Second, the architecture doesn’t create

much in the way of extra communication. For example, whether an object calls a

graphics library or the graphics systems requests an object to draw, the number of

 the domain-specific components independent of eac

te

The prototype demonstrated this requirement

 COTS-based development, the systems are truly independe

a

p

 90

interactions is the same. The exception comes from the fact that there is no direct

communication between the domain-specific components. When components need to

communicate, they must write data to the object management system, and wait for the

response in the next system tick cycle.

The prototype seems to support the notion that performance is not significantly

affected by the architecture. In quick comparisons between the samples that came with

the Ogre™ graphics engine, and the prototype there were no significant performance

differences. Although more detailed profiling would be required to prove how much the

architecture affects performance; that is beyond the scope of this thesis.

6.3 Important Considerations

Developers considering this architecture should read and understand some of the

important considerations that will affect development. These are a few items of wisdom

that were found during the work on this thesis.

6.3.1 Design is Critical

One important fact when using this architecture is that the architecture “supports”

many of the quality attributes. The design plays a large role in determining whether those

quality attributes are part of the system. One such example is the quality of knowledge

localization. This quality wasn’t realized until the design phase where the observer

pattern came into play.

The design can also negate some of the implied quality attributes of the architecture.

For example, the architecture also “supports” easy component integration by limiting the

communication between the domain-specific component and the object management

 91

component to simply re ose objects. The

, where the object component is forced to implement interfaces for ea

to

architecture, it

6.3.2 Centr

This archi

curr

graph

makes

On

specialist

managem

algorithm

domain s

sound, ne

Man

items

for that

performa

concern. The a

provide a doma

questing objects, and read/writing data to th

prototype design ch

attached component, makes component integration quite tedious. So while it is possible

 design complex game systems with the proposed quality attributes using this

 left to the designer to ensure those attributes are realized in the system.

al Object Management System = VERY different

tecture uses a very different topology than the designs of today. The

ent trend seems to be that every system has its own object management system – e.g.

ics & 3D sound engines each have their own way of organizing objects. This

 the libraries easy to use, but it duplicates functionality.

e of the goals of this thesis is to promote COTS based development where

s can design the best and most optimized components. By centralizing object

ent into one area, it means specialists can build the best management

s, whether BSP trees, Oct trees, etc. without being concerned with some of the

pecialties. It also means people writing the domain-specific components, like

ed not concern themselves with complex scene management.

y game developers may take issue with this approach making arguments that

 like a graphics engine may have highly optimized scene management specialized

 particular graphics engine, and that a 3rd party scene manager would impact

nce. The thing to realize is that this is a design concern, not an architectural

rchitecture merely states that the object management component will

in-specific component with objects to process. There is no restriction

 92

saying that a specific graphics component can’t recommend a specific optimized scene

managem

management sy

The archite

within the objec

scene managers

be designed to p

use. Another sc

within a specifi

6.3.3 Think about the Data

When desig

reside in the sha

there is usable b

location and ori

Another iss

components ma

different data ty

values for locat

no different tha rd

different manne

ent system to use. By placing it in a central location, however, that same scene

stem is available for the other systems to use.

cture also doesn’t state that there is only one scene management system

t management component. The object component may have multiple

 that the different systems can use. For example one scene manager may

rovide a list of objects in the player’s view that the graphics engine will

ene manager could exist that is designed to provide a list of objects

c radius of the player that is used by the sound and AI components.

ning to this architecture it is important to think about the data that will

red data store. Part of the benefit of this design is that the data you place

y all domain-specific systems. For example, objects in the prototype had

entation that was used by both the graphics systems and the AI systems.

ue related to data is the data types used. Since the domain-specific

y be written by different companies, and so may be expecting slightly

pes. The graphics engine may want “double” precision floating point

ion, while the sound engine may require integers. While this problem is

n current games using 3 party libraries, it shows itself in a slightly

r.

 93

6.4 Future Research

During the

drawing board b

as ideas for futu

be answe

6.4.1 Can t

Massively mu

entertainment. Th

very interesting pr

will be interesting

thousands of playe

6.4.2 Design: Domain-specific Comp

Management Component

The simple design used for the prototype, forcing the object management component

to implement interfaces, is very weak. While forcing objects to implement data access

interfaces may be necessary to maintain performance, attaching components and

requesting object lists don’t have the same restrictions. A better design would allow

domain-specific components to easily attach to the object management system, and

request objects to process.

 course of completing this thesis a great many ideas were left on the

ecause they were beyond the scope of this thesis. They are captured here

re research, and represent many of the interesting problems that remain to

red.

his Architecture Work for Massively Multiplayer Online Games

ltiplayer games represent the next big advancement in electronic

e enormous number of distributed players and objects present some

oblems that were not considered in the design of this architecture. It

 to see if this architecture can scale across multiple servers, with

rs, all existing in a persistent world.

onent Connection to the Object

 94

6.4.3 Design: No More Interfaces to Access Object Data (If performance

allows)

 While functi

object data this arc

greatly affect perf

allow domain-spe

speed, the ability t

6.4.4 Architect

While the foc

level, architecting

would be in in

architecture could

which is likely du

reference architec

6.4.5 What

The independent components and system of system architectural styles were rejected

in this thesis because it was thought the messaging overhead were to high for game

systems. It would be an interesting experiment to see how much that overhead would

affect performance. If messaging does not cause a significant drop in performance many

other architectural possibilities are made available.

on calls to retrieve the data is probably the fastest method to access

hitecture can support, there may exist more generic methods that don’t

ormance. For example, if a simple query language methodology could

cific components to access object data without a significant cost in

o add and change components is made significantly easier.

ure Inside the Components

us of this thesis was designing the architecture at the inter-component

 the components themselves is still relatively uncharted territory. It

teresting assignment to research the domains and see if a common

 be created for the specific components. If no such architecture exists,

e to the diversity of the domains, then work should begin designing

tures for each of the domains.

is messaging overhead for independent component style

 95

6.4.6 The Architectural Tradeoff Analysis Method

An import

architectural trade

attributes could be

analyze this archit

not tested.

ant piece of work is left undone in this thesis, and that is the

off analysis method (ATAM). Due to time restrictions not all quality

 analyzed. It would be an extremely worthwhile endeavor to truly

ecture more completely, looking at those quality attributes that were

Works Cited

“3 Million Lines of Code.” EdGames. Sept. 13 2004.
<http://edweb.sdsu.edu/courses/edtec670/edgames/2002/12/3-million-lines-

of-code.htm>.

“3D Engin

<http:/

es Database: Unreal Engine 3.” DevMaster.net. Sept 14. 2004.

/www.devmaster.net/engines/engine_details.php?id=25>.

“A $30 Billion

< http:

 Dollar Industry.” Aug. 2003.

//www.xboxcity.com/console/NewsDetail.asp?NewsID=1422&fc=0 >.

“A Brief Histo

< http:

ry of the FPS.” Aug. 2003.

//www.3dactionplanet.com/features/editorials/fpshistory1/>.

Adolph, Steve

Sept 12. 2004.

<http://ww

. “Reuse and Staying in Business.” Gamasutra. 12 Dec. 1999.

w.gamasutra.com/features/19991213/adolph_02.htm>.

Alves, Carina. João B

Among Requir

Informática, U

5 2004. <h

osco Pinto Filho and Jaelson Castro. “Analysing the Tradeoffs

ements, Architectures and COTS Components.” Centro de

niversidade Federal de Pernambuco Recife, Pernambuco. Sept.

ttp://www.cs.ucl.ac.uk/staff/C.Alves/WER01_COTS.pdf>.

Bass, Len. Paul Cleme

Addison-W

Busto, Roberto Del. “G

< http://coe.sds

nts, and Rick Kazman. Software Architecture in Practice.

esley, 1998.

ames and Simulations.” Aug. 2003.

u.edu/eet/Articles/gamessims/index.htm >.

Calvert, David. “Soft

<http://hebb.cis.uoguelph.ca/~dave/27320/new/architec.html

ware Architectural Styles.” 3 June 1996. Aug. 16 2004.

>.

 97

“Definition: System of Systems.” The Free Dictionary.com. Oct. 7 2004.

<http://encyclopedia.thefreedictionary.com/System%20of%20systems>.

“Domain-specific Software Architectures.” Aug. 2003.

< http://sunset.usc.edu/classes/cs578_2003/13-Domain-

Specific%20Software%20Architectures%20(DSSA).pdf >.

Duffy, R. “Software Architecture.” Sept. 12 2004.

<http://members.aol.com/rduffy4187/report.html>.

E. Berard. Essays in Object-Oriented Software Engineering. Prentice Hall, 1992.

Fristrom, Jamie. “Manager in a Strange Land: Most Projects Suck.” Gamasutra.

17 Oct. 2003. Sept. 12 2004.

<http://www.gamasutra.com/features/20031017/fristrom_01.shtml>.

“History of Arcade Games.” Aug. 2003.

< http://www.hut.fi/~eye/videogames/arcade.html>.

“How to Make a COTS Project Fail.” Aug. 2003.

< http://www.versaterm.com/topic_list/topic16.htm>.

Nilson, Roslyn; Kogut, Paul; & Jackelen, George. Component Provider’s and Tool

Developer’s Handbook Central Archive for Reusable Defense Software

(CARDS). STARS Informal Technical Report STARS-VC-B017/001/00.

Unisys Corporation, March 1994.

Rollings, Andrew and Dave Morris. Game Architecture and Design. The Coriolis

Group, 2000.

Sloan, Jason and William Mull. “Doom 3 FAQ.” Aug. 2003.

 98

< http://www.newdoom.com/newdoomfaq.php#5>.

“Unreal Tournament History”. Oct. 20 2004.

<http://www.unrealtournament.com/general/history.php>.

APPENDIX A -
GAME ANALYSES

 100

TABLE OF CONTENTS – APPENDIX A

Page

ame Analysis .. 107

y and Dynamic View .. 107

107

System ... 107

.. 108

110

Game Logic... 110

odules .. 110

AI ... 110

Audio ... 110

Graphics... 110

.. 110

........ 110

User Interface .. 110

Starcraft .. 111

111

... 112

Select Single Player Game .. 112

SECTION NAME

G

Game Anal sis - Use Case

Player ...

System (Ticked)...........

Modules.. 109

Game Data ..

Technology M

Network

Physics ...

Use Cases ..

Startup.............

Select Multi-Player Game ... 112

SECTION NAME Page

101

Options Menu .. 114

ission... 114

........... 115

Get Mission Objective ... 115

.. 115

............ 115

Return To Game .. 115

Save Game... 116

Play Starcraft ... 117

Attack Unit .. 117

Change Map Display Area .. 123

Gather Resources... 126

Give unit an order .. 132

Move to Location... 137

Research Technology .. 142

Select Object.. 145

Building construct Unit ... 150

Give Building an order .. 150

Hold Position ... 150

Manipulate Object Resources.. 151

Manipulate Player Resources .. 151

Modify Doable Commands ... 151

End M

Get Help..

Load Game

Modify Options ...

SECTION NAME Page

102

Patrol Location .. 151

51

Unit Construct Building... 151

Design: Tick Starcraft System... 153

Tick Starcraft Game System.. 154

Tick AI System... 155

Tick AI System.. 155

Navigate Map - Pathfinding .. 157

Attack... 158

Calculate AI State.. 158

Calculate Next Movement ... 159

Calculate unit action .. 159

Execute Map Watcher ... 159

Tick Audio System... 161

Tick Audio System .. 161

Tick Graphics System .. 164

ectSystem.. 164

ew Object .. 164

6

Update View.. 166

171

n View Objects .. 171

Stop Movement.. 1

:IGraphicsObj

Update Vi

Tick Graphics System.. 16

Update Main View...

Draw Mai

103

SECTION NAME Page

Draw Main View Terrain .. 171

Update All Views .. 171

Update Command Button View .. 171

Update Mini Map View... 172

Update Protrait View... 172

Update Status View ... 172

Tick Network Component.. 173

Broadcast local objects TO server ... 173

Tick Network System .. 173

Update objects FROM server .. 175

Tick Object Component ... 176

Tick Object System / Game Logic .. 176

Update Commander Object ... 178

Update Controlled Object.. 178

Tick UI Component.. 179

Process Keyboard .. 179

Process Mouse ... 179

Tick User Interface .. 179

Unreal Tournament .. 182

Use Cases .. 182

Play Unreal Tournament.. 183

Collect Ammo ... 183

SECTION NAME Page

104

Collect Health .. 183

183

Collect Weapon ... 185

Jump... 185

Move.. 185

.. 187

.. 187

d)... 188

mponent ... 189

.. 189

ponent ... 189

Tick Graphics 3D Component... 189

... 189

mponent ... 190

....... 190

Tick AI System... 191

ment Game System .. 191

191

Tick AI System.. 191

... 193

Collect Item ...

Rotate.....................

Shoot..................

Design: Tick .. 188

System (Ticke

Tick Physics Co

Tick AI System..

Tick Audio Com

Note ..

Tick Network Co

Tick Unreal Tournament Game System

Tick Unreal Tourna

System (Ticked)...

Note ... 191

Tick Player..................

SECT Page

105

ION NAME

Tick Projectile.. 193

Tick Audio Component.. 194

194

mponent.. 196

.... 196

Update All Graphical Views.. 198

tatus Overlay .. 198

rlays .. 198

.............. 198

Update Team Score Overlay.. 200

Update Weapon/Ammo Overlay... 200

Tick Network Component ... 201

Broadcast Local Objects TO Server 201

Tick Network Component... 201

Update Local Objects FROM Server.................................... 203

Tick Object Component... 204

Tick Object Component.. 204

Tick Physics Component ... 207

Calculate Collision Reaction... 207

Detect Collisions... 207

Tick Physics Component .. 207

Tick Audio Component ...

Tick Graphics 3D Co

Tick Graphics 3D Component...

Update Character S

Update GUI Ove

Update Main Play View ..

SECTION NAME Page

106

 107

A - 1.1

A - 1.1 amic View

This di
this the

 Game Analysis

.1 Game Analysis - Use Case and Dyn

agram shows the high level list of artifacts uncovered during the analysis phase of
sis.

Player

System

System (Ticked)

Name: Analysis
Author: Jeff Plummer

Updated: 11/9/2004 3:01:36 PM

Version: 1.0
Created: 11/1/2004 2:37:50 PM

Modules

+ Game Data
+ Game Logic
+ T echnology Modules

Starcraft

+ Use Cases

Unreal Tournament

+ Use Cases

Figure 46 : Analysis

A - 1.1.1.1.1.1

.1.1.1 Player
Type: torpublic Ac
Package: alysis - Use Case and Dynamic View

This actor represents the human player who is playing the game.

A - 1.1.1.1.1.1

Game An

.1.1.2 System
Type: lic Objectpub

 108

Package:

 system repres
ponen

Game Ana se iew

The ents "application" ll create and tick the
com ts.

A - 1.1.1.1.1.1.1.1.3 System (Ticked)

lysis - U Case and Dynamic V

portion of the code that wi

Typ public Objecte:
Package: Game Analysis - Use Case and Dynamic View

This actor represents the S t s occur on a regular or clocked
basis.

ystem bu implies the action

 109

A

 - o s

This e represents the logical m ame development.

This diagram shows all the logical m evelopment.

1.1.1.2 M

 packag

dule

odules involved in g

odules involved in game d

AI

(from Technology Modules)

Graphics

(from Technology Modules)

User Interface

(from Technology Modules)

Audio

(from Technology Modules)

Netw ork

(from Technology Modules)

Game Logic

Game Data

Name: Logica
Author: Jeff Pl
Version: 1.0
Cre 26/2
Upd /1/2

Figure 47 : Logical Modules

l Modules
ummer

ated: 9/
ated: 11

004 2:07:25 PM
004 3:24:35 PM

 110

A - 1.1.1.2.1 Game Dat

This package represents all the game specific data involved in the game.

A - 1.1.1.2.2 Game Log

This logical module represents the g ality for the system. Game
rules, behavior

A - 1.1.1.2.3 olog es

e development.

A - 1.1.1.2.3.1

This m re a r behavioral functionality
requ e

This logical module repre A ionality required in the game.

A - 1.1.1.2.3.3 Graphics

s ogical m re g e.

A - 1.1.1.2.3.4

This logical m re network functionality required in the game.

 5

This re p tionality required in the game.

A - 1.1.1.2.3.6 ter

a

ic

ame specific function
, etc.

Techn y Modul

These packages are the dom

ain-specific logical

sents the

modules involved in gam

rtificial intelligence o

AI

odule rep
 game.

 logical
ired in th

A - 1.1.1.2.3.2

Audio

sents the udio funct

Thi

 l odule rep

Network

odule rep

sents the

sents the

raphical functionality required in the gam

A - 1.1.1.2.3.

 logical m

 Physics

odule rep

User In

sents the

face

hysics simulation func

 111

This logical module represents the u onality required in the game.

A - 1.1.1.3 Starcraft

s r t sis ormed for the game
Star

A - 1.1.1.3.1 Use Cases

This diagram shows a hig ie s involved in
Starcraft(tm).

ser interface functi

Thi package
craft(tm).

epresents

he analy

h level v

 and design work perf

w of the use cases and actor

System
(Ticked)

(from Game Analy and Dynamic Visis - Use Case ew)

Player

(from Game Analysis - Use Case and Dynamic View)

System

(from Game Analy ic View)sis - Use Case and Dynam

Options Menu

+ End Mission
+ Get Help
+ Get M ission Objective
+ Load Gam e
+ Modify Options
+ Return To Game
+ Save Gam e

Startup

+ Select Multi-Player Game
+ Select Single Player Game

e Ca
ff Pl

Version: 1.0
26/
4/2

Name: Us
Author: Je

Created: 12/
Updated: 11/

se M odel
ummer

2003 5:59:05 PM
004 4:35:47 PM

Play Starcraft

+ Attack Unit
+ Change M ap Display Area
+ Gather Resources
+ Give unit an order
+ Move to Location
+ Research Technology
+ Select Object
+ Building construct Unit
+ Give Bui lding an order
+ Hold Position
+ Manipulate Object Resources
+ Manipulate Player Resources
+ Modify Doable Commands
+ Patrol Location
+ Stop M ovement
+ Unit Construct Building

Design: Tick Starcraft System

+ T ick AI System
+ T ick Audio System
+ T ick Graphics System
+ T ick Network Com ponent
+ T ick Object Component
+ T ick UI Component
+ T ick Starcraft Game System

Figure 48 : Use Case Model

 112

A - 1.1.1.1.1.1.1.1.1 Startup

This di ted to the player when the launch the
Starcra ion.

agram represents the initial options presen
ft(tm) applicat

Player

(from Game Analysis - Use Case and Dynamic View)

Select Single
Player Game

Select Multi-Player
Game

Name: Startup
Jeff Plummer
1.0

Created: 2/12/2001 12:00:00 AM
dated: 11/9/2004 2:19:05 PM

Author:
Version:

Up

Figure 49 : Startup

A - 1.1.1.3.1.1.1.1.1 Select Multi-Player Game
seType: public U Case

Pac Startup

e lt r gam les nst other human players
via a network connection the

A - 1.1.1.3.1.1.1.1.2 Select Single Player Game

kage:

Sel cting mu iplaye e enab
or over

the player to compete agai
 internet.

Typ public UseCasee:

Package: Startup

 113

Sele ngle player game prepa ayed on a single machine against
com trolled opponents.

cting a si
puter con

res a game to be pl

 114

A - 1.1.1.3.1.2 Options Menu

This diagram shows the options avai hoose from in the options

n
lable to the player to c

me u

Player

(from Ga e Cme Analysis - Us ase and Dynamic View)

Sav e Game

Load Game

Modify Options

Get Help

Get M ission
Obj ectiv e

End Mission

Return To Game

O
Jef
1.

d: 8/
11/

Name:
Author:
Version:
Create
Updated:

ptions Menu
f Plummer

0
23/2003 12:21:44 AM

9/2004 2:19:13 PM

ig

A - 1.1.1.3.1.2.1.1.1 End Mission

F ure 50 : Options Menu

 115

Typ public UseCasee:
Pac Options Menu

This use case represents the action to allow the player to end the current mission and quit

ack to the main startup screen.

kage:

b

A - 1.1.1.3.1.2.1.1.2 Get Help
Type: public UseCase
Package: Options Menu

Enter the help system.

A - 1.1.1.3.1.2.1.1.3 Get Mission Objective
Typ UseCasee: public
Packag

This us g the player to re-request the list of
objectiv

A - 1.1.1.3.1.2.1.1.4 Load Game

e: Options Menu

e case represents the action of allowin
es for the current game level.

Type: public UseCase
Package: Options Menu

Thi g the
play ey last saved.

 - 1.1.1.3.1.2.1.1.5 Modify Options

s use case reoresents the functionality of loading a game state from a file, allowin
er to continue a game where th

A
Type: public UseCase

ackage: Options Menu P

A - 1.1.3.1.2 Re G1. .1.1.6 turn To ame
Type: public UseCase

enu Package: Options M

Allows the player to exit the options menu and return to playing the current game.

 116

A - 1.1.1.3.1.2.1.1.7 Save Game
Type: public UseCase
Package: Options Menu

This use case r t n o state to a file.

epresents he actio f saving the current game

 117

A - 1.1.1.3.1.3 arcraft

This diagram represents the actions t ile playing the game.

Play St

he player can perform wh

Player

(from Game Analysis - Use Case and Dynamic View)

Select Obj ect

Change Map
Display Area

Giv e unit an order

Unit Construct
Building

Building construct
Unit

Attack Unit

Mov e to Location

Patrol Location

Stop Mov ement

Hold Position

Research
Technology

Manipulate Player
Resources

Gather Resources

Manipulate Object
Resources

Name: Play Starcraft
Author: Jeff Plum
Version: 1.0
Created: 8/22/2003
Updated: 11/4/200

mer

 11:30:19 PM
4 4:35:06 PM

«extend»

«extend»

«include»

«include»

«extend»

«extend»

«extend»

«include»

«include»

«extend»

«extend»

«include»

«extend»

«include»

«extend»

«include»

«include»

Fig

A - 1.1.1.3.1.3.1.1.1 Attack Unit

ure 51 : Play Starcraft

Type: public UseCase
Package: Play Starcraft

This use case represents the action of a player telling one of his/her units to attack another
unit.

Scenarios

Basic {Basic Path}.

 118

1. Player clicks the attack button
2. Player clicks an enemy unit
3. Unit enters attack state, and will move and attack selected enemy unit.

Enemy enters zone of control {Alternate}.
Description:
 Without requiring the player to do anything, when an enemy unit enters a unit's
zone of control, the unit will attack.

Version:
Created: PM

pdated:

Name: Analysis: Attack Unit (Logical Modules Involved)
Author: Jeff Plummer

1.0
9/8/2003 11:09:59
11/4/2004 4:30:32 PMU

Player

(from Game Analysis - Use Case and Dynamic View)

Game Logic

(from Modules)

Game Data

(from Modules)

AI

(from Technology Modules)

ref

Analysis: Giv e unit an order by clicking order button (Sub-Systems Inv olv ed)

ref

Analysis: Select Obj ect (Sub-Systems Inv olv ed)

At the analysis level, these interactions are no
design. They merely show which logical mod
not necessarily how the functionality gets im

t meant to show
ules are involved,

plemented.

//Set Object state - "Pre-Attack, awai ting target definition"

//Set object state - "Attack target"

//Calculate how to behave

//Get object data

//Get navigation map

//Calculate Behavior

//Write object's behavior

This diagram shows what logical modules are required to perform the "Attack Unit"
use-case.

 52 is odules Involved)

Analysis: Attack Unit (Logical Modules Involved) Messages

Figure : Analys : Attack Unit (Logical M

I
D

Messag
e

From
Object

To
Object

Notes

1 alysi

y

button

S

Player An
s: Give
unit an
order b
clicking
order

(Sub-
ystems

ive
ase

Call the "Analysis: G
unit an order" use c

 119

Inv
d)

olve

2
e

clicking
order
button

Systems
Involve
d)

g

ve Unit an Order"
interaction.

 Analysi
s: Giv
unit an
order by

(Sub-

Game
Logic

Represents the beginnin
of the details specific to
this "Gi

3 //Set
Object
state -
Pre-

Attack,
awaitin
g target
definiti
on"

Game
Logic

 Game logic tells the
object to prepare for an
input selecting the attack

"

Game
Data

target for that unit.

4 yer
t

ject

e

Call the "Analysis: Select Pla Analysi
s: Selec
Ob
(Sub-
Systems
Involv
d)

Object" use case

5 //Set

 -

target"

Tell the object waiting for
get

st been
object
state
"Attack

Game
Logic

Game
Data an attack target, to tar

the unit that has ju
selected.

6 Analysi
s: Select

ub-

lve
d)

Game
Logic s specific to

Object
(S
Systems
Invo

Represents the beginning
of the detail
this "Select Object"
interaction.

7 //Calcul
ate how
to
behave

Game
Logic

AI The AI logical module
will determine how the
object should behave - in
this case how the object

 120

will attack.
8

data

I me

n,

//Get
object

A Ga
Data

The AI functionality
requires object data to
process like current
position, target positio
attack range, etc.

9 //Get AI Game functionality

s data

navigati
on map

Data
The AI
requires map navigation
data to process. The
navigation map i
that says how an object
can move from one
location to another.

1
0

//Calcul
ate
Behavi

AI AI d
AI

l
ct

ould
d

any attack specific
behavior.

or

Using the object data an
map information the
logical module wil
determine what the obje
should do. It will decide
how the object sh
move (if required) an

1

//Write
object's
behavio
r

AI
Data

Once the AI functionality
has decided what the
object will do, the data /
state information must be

side the object.

Game
1

saved in

 121
System (Ticked)

(from Game Analysis - Use Case and Dynamic View)

Player

Object & Object
Management System

(Data)

Artificial Intelligence

ref

Design: Giv e unit an order (Component Sequence)

ref

Design: Select Obj ect (Component Sequence)

(from Game Analysis - Use Case and Dynamic View)

Nam e: Design: Attack Uni t (Component Sequence)
Author: Jeff Plumm er
Version: 1.0
Created: 9/30/2004 9:59:40 AM
Updated: 11/4/2004 4:40:13 PM

T his diagram is specific to the simple
design used in this thesis.

//Set object state to "pre-attack awaiting target definition"

//Assign target to selected object

//T ick AI System

//Get AI Objects to Process

//Get navigation map

//Calculate attack route for object in attack state

//Update object data

Thi level that occur to
complete the "Attack Unit" use case.

Figure 53 : Design: Attack Unit (Component Sequence)

Design: Attack Unit (Component Sequence) Messages

s diagram shows the sequence of events at the component

I
D

Messag
e

From
Object

To
Object

Notes

1 Player Design:

unit an
order

po

Sequenc

Call the "Give Unit an
Give Order" use case.

(Com
nent

e)
2 Design:

Give
n

ompo
nent
Sequenc
e)

e
ment
System
(Data)

ing
of the order specific

unit a
order
(C

Object
&
Object
Manag

Represents the beginn

interaction details.

3 //Set
object
state t
"

o

pre-

Object
&
Object
Manage

Object
Mana

Object
&

ge
he

In this design the game
logic resides within the
game object itself, so t
object readies itself for

 122

attack
awaitin

niti

ment
System

ment
System

receiving the attack
target.

g target
defi
on"

(Data) (Data)

4 Player Design:
Select
Object
(Compo
nent
Sequenc

Call the "Select Object"
use case.

e)
5 :

Select
Object

o

Sequenc
e)

t
&
Object

e

System
(Data)

of the details specific to
this "Select Object"

 Design

(Comp
nent

Objec

Manag
ment

Represents the beginning

interaction.

6 //Assig
n target
to
selected
object

Object
Manage
ment
System
(Data)

Object
Manage
ment
System
(Data)

the
game object itself, the
object sets the attack
target to the object that
has just been selected.

Object
&

Object
&

In this design the game
logic resides within

7 //Tick
AI
System

System
(Ticked
)

Artificia
l
Intellige
nce

In this d n the AI
resides in its own
component and will be
"ticked" to tell the AI
system to operate on a list
of objects.

esig

8 //Get AI
Objects
to
Process

Artificia
l
Intellige
nce

Object
&
Object
Manage
ment
System
(Data)

In this design the AI
system will request list(s)
of objects to process.
The Object management
component is responsible
for providing the domain-
specific component list(s)
of relavant objects (i.e.
not ALL the objects).

9 //Get
navigati
on map

Artificia
l
Intellige
nce

Object
&
Object
Manage

The AI system will
require some form of
traversability map of the
object system.

 123

ment
System
(Data)

1

//Calcul
ate
attack

for

attack

l
Intellige

l
Intellige

map information the AI
component will

should do. It will decide
e object should

move (if required) and
any attack specific

ehavior.

Artificia Artificia Using the object data and
0

route nce nce determine what the object

how th

b

object
in

state
1
1 ct

Artificia
l

t

nt
System
(Data)

Update the object with
data specific to the attack

//Updat
e obje
data Intellige

nce

Object
&
Objec
Manage
me

behavior the AI
component decided.

A - 1.1.1.3.1.3.1.1.2 Ch ap

ange M Display Area
Typ public Usee: Case

wing a

Package: Play Starcraft

Scroll the main screen sho different area of the map.

e f

Scenarios

at edge oMous display

 reache
 in the di

{B
ip

use s th y, the display will scroll
ap ly re

1. Mouse moves to edge of s

ov ble
pd minima ectangl

 L n p

asic Path}.

e edge of the visible displa
ction of that edge.

creen.

Descr
 When
the m

tion:
 the mo
 smooth

2. M
3. U

e viewa
ate

ocation o

 area.
p r

 Mini-Ma

e.

 Click {Alternate}.
Descrip
 When ic tion on the mini-map, that area becomes the new view
area.

tion:
 a user cl ks a loca

 124

User Interface

chnology Modules)(from Te

Graphics

(from Technology Modules)

Game Logic

(from Modules)

Game Data

(from Modules)

Player

(from Game An

Name:
Author:
Version:
Created:
Updat

alysis - w)

An Area by Moving Mouse to Edge of Screen(Logical Modules Involved)
Jef
1.0
9/2

ed: 11

 Use Case and Dynamic Vie

alysis: Change Map Display
f Plumm er

9/2004 4:15:41 PM
/4/2004 4:31:25 PM

At the analysis level , these interactions are not meant
to show design. They merely show which logical
m odules are involved, not necessari ly how the
functional i ty gets implem ented.

//Player moves mouse

//M essage m ouse is at edge of screen

//Update Camera Position

//Update Graphics Views

T ra s w ca o perform the "Change Map
D r ca is sequence where the
mouse is moved to the th

e ly nge dge of
n(Logical Modules Involved)

a ange Map Display Area by Moving Mouse to Edge of Screen(Logical
Modules Involved) Messages

his diag
isplay A

Figur

m show
ea" use-

 54 : Ana

hat logi
se. This
 edge of
sis: Cha

Scree

l modules are required t
only representative for the
e viewable screen.
 Map Display Area by Moving Mouse to E

An lysis: Ch

I
D

Messag
e

From
Object

To
Object

Notes

1 r
moves
mouse

Interfac
e

The player moves the
mouse to the edge of the
main view screen.

//Playe Player User

2 //Messa
ge

User
Interfac

Game
Logic

The ga
know t

mous e e

edge of

me logic needs to
hat the mouse has

moved to the edge of the
screen. is at

screen
3

Ca
Po

Game Game
Data

In order to change the
map display area we just

e

//Updat
e Logic

mera change where th
sition "camera" is located.

4 //Updat
e
Gr
s Views

Game Graphic The graphics need to be
n using the new

aphic
Logic s redraw

"camera" position.

 125

Player

(from Game Analysis - Use Case

System (Ticked)

(from Game Analysis - Use Case and Dynamic View)

User Interface Obj ect & Obj ect
Management System

(Data)

Graphics 3D System

 and Dynamic View)

Name: Desi nent Sequence)
Author: Jeff
Version: 1.0
Created: 9/30
Updated: 11/5

gn: Change M ap Display Area (Compo
 Plummer

/2004 8:29:42 AM
/2004 2:19:26 PM

This diagram is speci fic to the sim ple
design used in this thesis.

//User moves m ouse (to the edge of the screen)

//T ick UI System

//Update view / object l istening to mouse click

//T ick Object System

//Update cam era object

//T ick Graphics System

//Get Views and Visible Objects

//Draw views using updated data (the camera was updated)

This diagram shows the sequence of events at the component level that occur to
complete the "Change Map Display Area" use case.

Figure 55 : Design: Change Map Display Area (Component Sequence)

n: Chan i rea

Desig ge Map D splay A (Component Sequence) Messages

I
D

Messag
e

From
Object

To
Object

Notes

1 //User
moves
mouse
(to the
edge of

User
Interfac
e

the
screen)

Player

2
(Ticked
)

Interfac
e

r atleast update
variables based on the UI
events that occurred.

//Tick
UI
System

System User Ticking the UI system
tells the UI Component to
grab the status of all UI
devices, o

3 //Updat
e view /
object
listenin
g to

User
Interfac
e

Object
&
Object

Tell any UI event
listening objects in the
game object component

Manage
ment

about the mouse
movement.

 126

mouse
clic

k ata)

System
(D

4

System
d

Object

Manage
ment
System
(Data)

In this simple design the
 the

the object component is
the same as processing all
game logic.

//Tick
Object
System

(Ticke
)

&
Object

game logic resides in
object system, so ticking

5 //Upd
e
camera
object

at

Object
Manage
ment

Object
Manage
ment

tem
(Data)

ns

position.

Object
&

System
(Data)

Object
&

Sys

When the game object
listening to mouse actio
gets ticked, it tells the
camera to change

6
Graphic
s
System

System
(Ticked
)

Graphic
s 3D
System l

tem to

//Tick In this design the
graphics resides in its
own component and wil
be "ticked" to tell the
graphics sys
operate on a list of
objects.

7
Views
and

e

Graphic
s 3D
System

Object
&
Object

e

System
(Data)

re //Get

Visibl
Objects

Manag
ment

Get the objects that a
visible for drawing.

8 //Draw
views
using

camera
was
updated
)

Graphic
s 3D
System

Graphic
s 3D
System

s
n the

updated
data
(the

Draw the returned object
to the screen based o
view context.

A - 1.1.1.3.1.3.1.1.3 Gather Resources
Type: public UseCase

 127

Package: Play Starcraft

Certain units can gather resources from the m p. They interact with a resource object,
and then carry some resources back to their base where it is added to the player's
resources.

Scenarios

Basic Path

a

 {Basic Path}.
1. Unit receives gather resources command message (includes target).
2. Unit Moves to resource location.
3. Unit intereacts with resource for a period of time.
4. Unit moves to base.
5. Unit interacts with base, depositing the collected resources.

Player

(from Game Analysis - Use Case and Dynamic View)

Name: Analysis: Gather Resources (Logical Modules Involved)
Author: Jeff Plummer
Version: 1.0
Created: 9/29/2004 5:31:17 PM

2004 2:19:06 PM

Game Data

(from Modules)

Game Logic

(from Modules)

AI

(from Technology Modules)

ref

Analysis: Giv e unit an order by clicking order button (Sub-Systems Inv olv ed)

ref

Analysis: Select Object (Sub-Systems Inv olv ed)

Updated: 11/5/

At the analysis level , these interactions ar
design. T hey merely show which logical
necessari ly how the functional i ty gets im

e not meant to show
 modules are involved, not
plem ented.

//Set object state to "Gather - Awai ting resource target"

Set selected object state - "gather from target"

//Calculate unit behavior

//Get object data

//Get navigation map

//Calculate behavior

//Write object data (movement, etc).

ra s w logica es are required to perform the "Gather

Fi : A G l Modules Involved)

Analysis: Gather Resources (Logical Modules Involved) Messages

This diag
Resources" use-case.

m show hat l modul

gure 56 nalysis: ather Resources (Logica

I
D

Messag
e

From
Object

To
Object

Notes

1 Player Analysi
s: G
unit an
order b

ive

y

e
Call the "Analysis: Give
unit an order" use cas

 128

clicking
order
button
(Sub-

olve
Systems
Inv
d)

2
e

clicking

button
(Sub-

g

nit an Order"
interaction.

 Analysi
s: Giv
unit an
order by

order

Systems
Involve
d)

Game
Logic

Represents the beginnin
of the details specific to
this "Give U

3 //Set
object
state to

Game
Logic

Game
Data

that "Gather
-
Awaitin
g
resourc
e
target"

Game logic tells the
object to prepare for an
input selecting the
resource target for
unit to gather from.

4 Player Analysi
s: S
Object
(Sub-
System
Involve
d)

elect

s

 Call the "Analysis: Select
Object" use case

5 Analysi
s: S
Object
(Sub-
System
Involve
d)

elect

s

ic
ng

t"

Game
Log

Represents the beginni
of the details specific to
this "Select Objec
interaction.

6 Set
sele
ob

cted
ject

Game
Logic

Game
Data

 for
arget

Tell the object waiting
a gather target, to t
the resource that has just

 129

state -
"gather
from
target"

been selected.

7 //Calcu
ate un

l
it

behavio
r

ame

G
Logic

AI The AI logical module
will determine how the
object should behave - in
this case how the object
will behave in order to
gather resources.

8 //Get
object

AI Game
Data

e
data

The AI functionality
requires object data to
process like current
position, target resourc
position, etc.

9
navigati
on map

on

s how an object

//Get AI Game
Data

The AI functionality
requires map navigati
data to process. The
navigation map is data
that say
can move from one
location to another.

1
0

behavio
r

data and

t
do. It will decide

//Calcul
ate

AI AI Using the object
map information the AI
logical module will
determine what the objec
should
how the object should
move to the resource(if
required) etc.

1
1

//Write
object
data
(move
ment,
etc).

lity
has decided what the
object will do, the data /
state information must be
saved inside the object.

AI Game
Data

Once the AI functiona

 130

Player

(from Game Analysis - Use Case and Dynamic View)

System (Ticked)

(from Game Analysis - Use Case and Dynamic View)

Obj ect
Managem

(D

 & Obj ect
ent System
ata)

Artificial Intelligence

ref

Design: Giv e unit an order (Component Sequence)

ref

//Set object state to "Gather - awaiting reesource target

Design: Select Obj ect (Com Sequence)ponent

"

//Set object's resource target

//T ick AI System

//Get objects to process

//Get navigation map

Process objects

//Write object data

Name: Design: Gather Resources (Component Sequence)
Author: Jeff Plummer
Version: 1.0
Created: 9/30/2004 12:59:52 PM
Updated: 11/5/2004 2:12:14 PM

This diagram is specific to the simple
design used in this thesis.

s t quenc nts at the component level that occur to

Figure 57 : Design: Gather Resources (Component Sequence)

Design: Gather Resources (Component Sequence) Messages

This diagra
complete the "Gather Resources" use case.

m show he se e of eve

I
D

Messag
e

From
Object

To
Object

Notes

1 Player

o

Sequenc
e)

Call the "Give Unit an
Order" use case.

Design:
Give
unit an
order
(Comp
nent

2

c

Object
&
Object
Manage
ment
System

Represents the beginning
of the order specific
interaction details.

Design:
Give
unit an
order
(Compo
nent
Sequen
e)

(Data)

3 //Set Object Object In this design the game

 131

object
state t
"Gather
-

o

awaitin
g
reesour
ce
target"

&
Object
Manage
ment
System
(Data)

&
Object
Manage
ment
System
(Data)

logic resides within the
game object itself, so the
object readies itself for
receiving the resource
target.

4 Player Design:
Select
Object
(Compo
nent
Sequenc
e)

Call the "Select Object"
use case.

5 Design:
Select
Object
(Compo
nent
Sequenc
e)

Object
&
Object
Manage
ment
System
(Data)

Represents the beginning
of the details specific to
this "Select Object"
interaction.

6 //Set
object's
resourc
e target

Object
&
Object
Manage

Object
&
Object
Manage

In this design the game
logic resides within the
game object itself, the
object sets the resource

elected.
ment
System

ment
System

target to the object that
has just been s

(Data) (Data)
7 //Tick

AI
System

(Ticked
)

l
Intellige

resides in its own
component and will be

system to operate on a list
cts.

System Artificia In this design the AI

nce "ticked" to tell the AI

of obje
8 et

objects

process

l

nce

&

e

In this design the AI
system will request list(s)

ement
component is responsible
for providing the domain-
specific component list(s)
of relavant objects (i.e.
not ALL the objects).

//G

to

Artificia

Intellige

Object

Object
Manag
ment
System
(Data)

of objects to process.
The Object manag

 132

9 //Get
avigati

on map

Artificia

ge

ject

ject

The AI system will

traversability map is
important so the object
can travel to the resource
target.

n l
Intelli
nce

Ob
&
Ob
Manage
ment
System
(Data)

require some form of
traversability map of the
object system. The

1 Process

ificia

e

Artificia

llige

Using the object data and

ired) and
any gather resource

0 objects
Art
l
Intellige
nc

l
Inte
nce

map information the AI
component will
determine what the object
should do. It will decide
how the object should
move (if requ

specific behavior.
1
1 ject

ificia ject

e

(Data)

component decided.

//Write
ob
data

Art
l
Intellige
nce

Ob
&
Object
Manag
ment
System

Update the object with
data specific to the gather
behavior the AI

an order A - 1.1.1.3.1.3.1.1.4 Give unit
Type: public UseCase
Package: Play Starcraft

Orders can vary from move, attack, patrol, etc.

Sce

narios
Order With Target. {Basic Path}.
DESCR

giving the order, the target of the
move command requires the user to select the loca
mo

IPTION:
The most common orders are move, attack, and gather resources order. After

order must be selected. E.g. Giving a unit a
tion to where the unit should

ve.

1. User clicks the order proper order command from the command window.
2. User selects the target of the order

Fast order command {Alternate}.

 133

DESCRIPTION:
 Right clicking a location represents the fast order command.

1. Use
2. Unit evaluates the order command. E.g. Right clicking an empty location will
mean execute the MOVE command, right clicking an enemy unit will imply the

 w alid et

r right clicks a location on the main map display.

ATTACK command.

Order ith inv targ {Exceptional}.
DESCRIPTION:
 User selects an invalid target of an order. E.g. User orders the unit to gather

rc a n ourc .

otify user of alid ord
bort order - return to sta order was given.

resou

1. N
2. A

es from on-res

inv

e object, or empty location

er.
te before

User Interface

(from Technology Modules)

Player

(from Game Analysis se and Dynamic View) - Use Ca

Game Logic

(from Modules)

Game Data

(from Modules)

Graphics

(from Technology Modules)

Name: Analysis: Give unit an order by cl icking order button (Logical Modules Involved)
Author: Jeff Plum mer
Version: 1.0
Created: 9/29/2004 4:33:18 PM
Updated: 11/5/2004 2:13:01 PM

At the analysis level, these interactions are not meant to show
design. T hey m erely show which logical modules are involved,
not necessari ly how the functional i ty gets im plem ented.

//Player Cl icks Mouse

//Receive m ouse cl ick noti fication

//Determine view cl ick occurred in

//Calculate world coordinates of mouse cl ick within view

//Get Button that was pressed

//Process Button Action

//Send order to selected object

T gra s w ica perform the "Give Unit an
O use

8 : Analysis: Give unit an order by clicking order button (Logical Modules
Involved)

his di
rder"
Figure 5

a m show
-case.

hat log l modules are required to

 134

Analysis: Give unit an order by clicking order button (Logical Modules Involved)
s

Me sages

I
D

Messag
e

From
Object

To
Object

Notes

1 //Player
Clicks
Mouse

Player User
Interfac
e

Player clicks mouse
cursor over an object

2 //Recei
ve
mouse
click
notifica
tion

User
Interfac
e

Game
Logic

Pass the mouse click to
the game logic to
determine the action .

3 //Deter
mine
view
click
occurre
d in

Game
Logic

Game
Logic

Determine which game
view was clicked... in this
case its the command
button view.

4 //Calcul
ate
world
coordin
ates of
mouse
click
within

Game
Logic

Graphic
s

Get the screen
coordinates of the objects

view
5

Button
that was
pressed

Lo
 button object that //Get Game Game Get the

gic Data is at the screen location.

6 //Proces
s

Game
Logic

Game
Logic

Determine order that wa
clicked

Button
Action

s

7 //Send Send order command to
order to
selected
object

Game
Logic

Game
Data the selected object.

 135

Player

System (Ticked)

(from Game Analysis - Use Case

(from Game Anal

Nam
Auth
Versi
Crea
U

ysis - U)

e: Compo
or:
on:
ted:

pdated:

se Case and Dynamic View

Design: Give unit an order (
Jeff Plum mer
1.0
9/30/2004 9:23:07 AM
11/5/2004 2:18:43 PM

nent Sequence)

 and Dynamic View)

User Interface Obj ect & Obj ect
M anagement System

(Data)

T his diagram is speci fic to the simple
design used in this thesis.

//Capture mouse click

//T ick UI System

//Send mouse cl ick to view/object

//Determine clicked object - an order button

//Send object the mouse cl ick

//T ick Object System

//Process Objects

//Cl icked Order button sends order to the selected uni t

//Objects adjusts state according to order

This diagram shows the sequenc he component level that occur to

 th un er
59 n: G nent Sequence)

Design: Give u rd onent Sequence) Messages

e of events at t
complete e "Give

Figure

nit an o

it an ord
 : Desig

er (Comp

" use case.
ive unit an order (Compo

I
D

Messag
e

From
Object

To
Object

Notes

1 //Captur
e mouse
click

Player User
cInterfa

e

2 //Tick System Ticking the UI system

least update
variables based on the UI
events that occurred.

UI
System

(Ticked
)

User
Interfac
e

tells the UI Component to
grab the status of all UI
devices, or at

3 //Send
mouse

o
nage

click t
view/ob
ject

User
Interfac
e

Object
&
Object
Ma
ment
System

Tell any UI event
listening objects in the
game object component
about the mouse
movement.

 136

(Data)
4 //Deter

mine

-
r

nage

nage

In this simple design,
when the graphics engine

rdinate position. We
then use that value to
determine which object
was clicked.

clicked
object
an orde
button

Object
&
Object
Ma
ment
System
(Data)

Object
&
Object
Ma
ment
System
(Data)

is ticked the graphics
engine updates the screen
coo

5
ect &

Object
Manage

ata)

&
Object
Manage

Tell the object it's been
clicked. It will process
the click when the object
itself is ticked.

//Send
obj
the
mouse
click

Object

ment
System
(D

Object

ment
System
(Data)

6
Object

System
(Ticked

Object
&

nage

e
ic resides in the

ponent is
the same as processing all
game logic.

//Tick

System) Object
Ma
ment
System
(Data)

In this simple design th
game log
object system, so ticking
the object com

7 //Proces
s

Object
&

ge

System

ge

System

Objects are processesed
in batch performing the

Objects Object
Mana
ment

(Data)

Object
&
Object
Mana
ment

(Data)

game logic.

8 //Clicke
d Order
button
sends
order to

ed

t

Object
Manage
ment

t

Object
Manage
ment

an order command to the
selected object.

Objec
&

Objec
&

The game logic for the
button object is to send

the System System
select (Data) (Data)
unit

9 //Object

adjusts
state
accordi

order

Object

Object
Manage
ment

(Data)

Object

Object
Manage
ment

(Data)

When the object receives
d, it sets

its state accordingly.
s & & an order comman

ng to System System

 137

A - 1.1.1.3.1.3.1.1.5 Move to Location
Type: public UseCase

ackage: Play Starcraft

om it n to a specific destination.

Order with target destination

P

Tell an object to move fr 's current locatio

Scenarios

 {Basic Path}.
After giving the order, the target destination of the order "move" must be selected.

1. Player clicks the move button.

2. Player clicks a destination location on the map.

Player

(from Game Analysis - Us View)e Case and Dynamic

Game Logic

(from Modules)

Game Data

(from Modules)

AI

(from Technology Modules)

Name: Analysis: Move to Location (Sub-sys
Author: Jeff Plumm er
Version: 1.0
Created: 9/30/2004 2:38:07 PM

tem Interactions)

Updated: 11/5/2004 2:19:47 PM

ref

Analysis: Giv e unit an order by clicking order button (Sub-Systems Inv olv ed)

At the analysis level, these interactions are not meant to show
design. They merely show which logical modules are involved, not
necessarily how the functional ity gets implemented.

User Interface

(from Technology Modules)

//Set object state to - "Move - awai ting destination location"

//Mouse Cl ick on location

//T el l game logic
about mouse cl ick

//Set selected object's destination

//Calculate move

//Get object data

//Get maneuver network

//Calculate move

//Update data

al modules are required to perform the "Move to

Figure 60 : Analysis: Move to Location (Sub-system Interactions)

tem Interactions) Messages

This diagram shows what logic
Location" use-case.

Analysis: Move to Location (Sub-sys

I
D

Messag
e

From
Object

To
Object

Notes

1 Player Analysi Call the "Analysis: Give

 138

s: G

clicking

(Sub-
Sys

" use case ive unit an order
unit an
order by

order
button

tems
Involve
d)

2 Analysi Game
s: Give
unit an

Logic of the details speci
this "Give Unit an Orde

order by
clicking
order
button
(Sub-
Systems
Involve
d)

Represents the beginning
fic to

r"
interaction.

3 //Set
object
state to
- "Move
-
awaitin
g
destinat
ion
location
"

Game
Logic

Game
Data

Game logic tells the
object to prepare for an
input selecting the target
locatio for that unit to
move to.

4 //Mouse
Click
on
location

Player User
Interfac
e

Player clicks on
movement destination on
the map.

5 //Tell
game
logic
about
mouse
click

User
Interfac
e

Game
Logic

The game logic will
process the mouse click

6 //Set
selected
object's

Game
Logic

Game
Data

Tell the object waiting for
a movement target, to
target the location that

 139

destinat has just been clicked.
ion

7 //Calcul Game AI The AI logical module

will behave in order to

to another.

ate
move

Logic will determine how the
object should behave - in
this case how the object

move from one location

8 //Get
object
data

AI Game
Data

The AI f nctionality
requires object data to

etc.

u

process like current
position, target position,

9 //Get
maneuv

rk

AI Game
Data

The AI functionality
requires map navigation

e
navigation map is data

ow an object
can move from one

er data to process. Th
netwo

that says h

location to another.
1 //Calcul AI AI Using
0 ate

move

 the object data and
map information the AI
logical module will
determine what the object
should do. It will decide
the path the object will
travel to the destination.

1
1

//Updat
e data

AI Game
Data

Once the AI functionality
has decided what the
object will do, the data /
state information must be
saved inside the object.

 140

Player

(from Game Analysis - Use Case and Dynamic View)

System (Ticked)

(from Game Analysis - Use Case and Dynamic View)

Name: Design: M ove to Location (Component Sequence)
Author: Jeff Plummer
Version: 1.0
Created: 9/30/2004 3:01:14 PM
Updated: 11/5/2004 2:25:11 PM

Obj ect & Obj ect
M anagement System

(Data)

Artificial Intelligence

ref

Design: Giv e unit an order (Component Sequence)

User Interface

This diagram is specific to the sim ple
design used in this thesis.

Set object state to "Move - awai ting destination"

//Cl ick Mouse

//T ick UI System

//Send UI Events to Listening Objects

//T ick Object System

//Set destination

//T ick AI System

//Get object data

//Get maneuver network

//Calculate maneuver

//Update data

This diagram shows the sequence of events at the component level that occur to
complete the "Move to Location" use case.

Figure 61 : Desig onent Sequence)

Design: Move to Location (Component Sequence) Messages

n: Move to Location (Comp

I
D

Messag
e

From
Object

To
Object

Notes

1 Player Design:
Give

order
(Comp

Call the "Give Unit an

unit an

o
nent
Sequenc

Order" use case.

e)
2

order

Sequenc
e)

bject
Manage

(Data)

interaction details.

Design:
Give
unit an

(Compo
nent

Object
&
O

ment
System

Represents the beginning
of the order specific

 141

3 Set
object

awaitin
g
destinat
ion"

Object
&

m
S
(Data)

Object
&

(Data)

In this d n the game
logic resides within the

adies itself for

esig

state to
"Move -

Object
Manage

Object
Manage

game object itself, so the
object re

ent
ystem

ment
System

receiving the movement
destination.

4 //Click Player User The player clicks the
Mouse Interfac mouse button on a

 on the map. e location
5 ick

UI

(Ticked Interfac
Ticking the UI system
tells the UI Component to

I
update

I

//T System User

System) e grab the status of all U
devices, or atleast
variables based on the U
events that occurred.

6 //Send
UI

User
Interfac

Object
&

nage

jects in the

Tell any UI event
listening ob
game object component
about the mouse
movement.

e Object
Ma
ment
System
(Data)

Events
to
Listenin
g
Objects

7 //Tick
Object

System
(Ticked

anage

m
(Data)

In this simple design the
game logic resides in the

ng

ll

Object
&

object system, so ticki
the object component is
the same as processing a
game logic.

System) Object
M
ment
Syste

8 t

Object

bject

System
(Data)

Object

ject

The game logic in the
ts the

//Se
listener object se
selected object's
movement destination.

&
Ob
Manage
ment
System
(Data)

destinat
ion

&
O
Manage
ment

9 //Tick
AI
System

System
(Ticked
)

a
l
Intellige

In this design the AI
resides in its own
component and will be

on a list
of objects.

Artifici

nce "ticked" to tell the AI
system to operate

1 //Get Artificia Object In this design the AI

 142

0 object l

nce

&

Manage
ment
System
(Data)

system will request list(s)

The Object management
component is responsible
for providing the domain-
specific component list(s)
of relavant objects (i.e.
not ALL the objects).

data Intellige Object of objects to process.

1
1

//Get
maneuv
er
network

Artificia
l
Intellige
nce

Object
&
Object
Manage
ment
System
(Data)

The AI system will
require some form of
traversability map of the
object system. The
traversability map is
important so the object
can travel to the resource
target.

1
2

//Calcul Artificia Artificia Using the object data and

ject

move.

ate
maneuv
er

l
Intellige
nce

l
Intellige
nce

map information the AI
component will
determine what the ob
should do. It will decide
how the object should

1
3

//Updat
e data

Artificia
l

Object
&

Update the object with
data specific to the gather

Intellig
nce

e
ent decided.

behavior the AI
compon

Object
Manage
ment
System
(Data)

A - 1.1.1.3.1.3.1.1.6 Research Technology
Type: public UseCase
Pac

kage: Play

New technolog n ts ns can be researched by
many buildings. Research takes tim

Scenarios

Click research command but

Starc

ies that e

raft

hance uni , or provide new unit actio
e and resources.

ton {Basic Path}.
ay th ch
i t ea

1. Pl
2. Un

er clicks
t begins a

e resear
imed res

 command.
rch process.

 143

3.
4. Up

 Res r ed ch process.
o pleti nit is upgraded with the new ability.

earch time
n com

 is updat
on, the u

 during resear

Play

Game Logic

(from Modules)

Game Data

(from Modules)

er

ref

Analysis

(from Game Analysis - Use Case and Dynamic View)

: Giv

Name: Sub-System Interaction)
Author:
Version:
Created:
Updated:

e unit an order by clicking order button (Sub-Systems Inv olv ed)

Analysis: Research Technology (
Jeff Plummer
1.0
9/30/2004 3:21:37 PM
11/5/2004 2:25:32 PM

At the analysis level, these interactions are not meant to show
design. They merely show which logical modules are involved, not
necessari ly how the functional i ty gets implemented.

//Set object state to researching technology

This diagram shows what logical modules are required to perform the "Research
Technology" use-case

Figure 62 : Analysis: Research Technology (Sub-System Interaction)

 Rese (Sub-System Interaction) Messages

.

Analysis: arch Technology

I
D

Messag
e

From
Object

To
Object

Notes

1 Player Analysi Call the "Analysis
s: Give

y
g

button
(Sub-
Systems

: Give
unit an order" use case

unit an
order b

nclicki
order

Involve
d)

2 Analysi
s: Give
unit an
order by
clicking
order
button
(S
S

ub-
ystems

Represents the beginning
of the details specific to

Game
Logic

this "Give Unit an Order"
interaction.

 144

Involve
d)

3 //Set
object

researc
hing
technol

Game
Logic

Game
Data

Game logic tells the
object t

state to

ogy

o begin
researching a technology

System (Ticked)

Player

(from Game Analysis - Use Case and Dynamic View)

(from Game Analysis - Use Case and Dynamic View)

Obj ect & Obj ect
Management System

(Data)

ref

Name: Design: Research Technology (Component Sequence)
Author: Jeff Plummer

Design: Giv e unit an order (Component Sequence)

Version: 1.0
Created: 9/30/2004 3:27:29 PM
Updated: 11/5/2004 2:26:01 PM

This diagram is speci fic to the simple
design used in this thesis.

//T ick Object System

//Object performs research process

f events at the component level that occur to
complete the "Research technology" use case.

esign: Research Technology (Component Sequence) Messages

This diagram shows the sequence o

Figure 63 : Design: Research Technology (Component Sequence)

D

I
D

Messag
e

From
Object

To
Object

Notes

1 Player Design:
Give

Call the "Give Unit an
Order" use case.

 145

unit an

(Compo

e)

order

nent
Sequenc

2 Design:
Give
unit an
order
(Compo
nent

Object
&
Objec
Manage
ment
System

Represents the beginning

t
of the order specific
interaction details.

Sequenc (Data)
e)

3 //Tick System Object In th
Object (Ticked &

Manage
ment

(Data)

is simple design the
game logic resides in the

the object component is
the same as processing all

System) Object

System

object system, so ticking

game logic.

4 t

s
res
h
pro

Object

(Data)

Object
&

System
(Data)

Ticking the object that is
performing technology

h sets it to increase

//Objec
perform &

earc

cess

Manage
ment
System

Manage
ment

its research progress.
Object Object researc

A - 1.1.1.3.1.3.1.1.7 Select Object
Type: public UseCase
Package: Play Starcraft

Selectable objects include units, buildings, resources, and wild creatures.

Scenarios

Mouse click on unit {Basic Path}.
Description: Player clicks the left mouse button over a unit in the main view
screen.

1. Tell unit is has been selected.
2. Tell views that an object(s) has been selected.

 146

Player

(from Game Analysis - Use Case and Dynamic View)

User Interface

(from Technology Modules)

Graphics

(from Technology Modules)

Game Logic

(from Modules)

Game Data

(from Modules)

At the analysis level, these interactions are not meant to show
design. They merely show which logical m odules are involved, not Name: Analysis: Select Object (Logical Modules Involved)

Author: Jeff Plum mer necessari ly how the functional i ty gets im plem ented.
Version: 1.0
Created: 9/29/2004 4:56:34 PM
Updated: 11/5/2004 2:26:13 PM

//Capture Mouse Cl ick

//Receive noti fication of mouse cl ick

//Determine view the cl ick occurred in

//Calculate world coordinates of mouse cl ick within view

//Get object that was cl icked on

//Perform game logic on object

//Update object data

This diagram shows what logical modules are required to perform the "Select
Object" use-case.

les Involved)

a is: Sele (L odules Involved) Messages

Figure 64 : Analysis: Select Object (Logical Modu

An lys ct Object ogical M

I
D

Messag
e

From
Object

To
Object

Notes

1 tur
e

Player User
Interfac

e

Players clicks the mouse
over the graphical

//Cap

e representation of a gam
object.

Mouse
Click

2 User
Interfac
e determine the action .

//Recei
ve
notifica
tion of
mouse

Game
Logic

Pass the mouse click to
the game logic to

click
3 //Deter

mine
Game
Logic Logic cked... in this

Game Determine which game
view was cli

 147

view
the
click
occurre
d in

case its the main game
view.

4 //Calcul
ate
world
coordin
ates of
mouse
click
within
view

Game
Logic

Graphic
s

Get the screen
coordinates of the objects

5 //Get
object
that was
clicked
on

Game
Logic

Game
Data

Get the game object that
is at the screen location.

6 //Perfor
m game
logic on
object

Game
Logic

Game
Logic

Tell the object it's been
selected

7 //Updat
e object
data

Game
Logic

Game
Data

Update the data so it is
drawn with a green circle
around it, and mark it as
reciever of any new
orders.

 148

Player

(from Game Analysis - Use Case and Dynamic View)

User Interface Obj ect & Object
Management System

(Data)

System (Ticked)

(from Game Analysis - Use Case and Dynamic View)

Graphics 3D System

Nam e: Design: Select Object (Com ponent Sequence)
Author: Jeff Plum mer
Version: 1.0
Created: 9/30/2004 8:56:51 AM
Updated: 11/5/2004 2:26:29 PM

T his diagram is specific to the sim ple
design used in this thesis.

//Capture m ouse cl ick

//T ick UI System

//Update Object / View l istening to mouse cl ick

//Determ ine Cl icked Object

//Send object the m ouse cl ick

//T ick object system

//Process m ouse cl ick event

//Set state to selected

//Add green circle graphical object as chi ld to selected object

//T ick Graphics System

//Get visible Objects

//Process Visible Objects

//Draw visibi le objects

 at the component level that occur to

ete th use case.
Select Object (Component Sequence)

ct Object (Component Sequence) Messages

This diagram shows the sequence of events
compl e "Select Object"

Figure 65 : Design:

Design: Sele

I
D

Messag
e

From
Object

To
Object

Notes

1 //Captur
e mouse
click

Player User
Interfac
e

2 //Tick
UI
System

System
(Ticked
)

User
Interfac
e

Ticking the UI system
tells the UI Component to
grab the status of all UI
devices, or atleast update
variables based on the UI
events that occurred.

3 //Updat
e
Object /
View
listenin
g to

User
Interfac
e

Object
&
Object
Manage
ment
System

Tell any UI event
listening objects in the
game object component
about the mouse
movement.

 149

mouse
click

(Data)

4 //Deter
mine
Clicked
Object

Object
&
Object
Manage
ment
System
(Data)

Object
&
Object
Manage
ment
System
(Data)

In this simple design,
when the graphics engine
is ticked the graphics
engine updates the screen
coordinate position. We
then use that value to
determine which object
was clicked.

5 //Send
object
the
mouse
click

Object
&
Object
Manage
ment
System
(Data)

Object
&
Object
Manage
ment
System
(Data)

Tell the object it's been
clicked. It will process
the click when the object
itself is ticked.

6

ment
System

the same as processing all
game logic.

//Tick
object
system

System
(Ticked

Object
&

In this simple design the
game logic resides in the

) Object
Manage

object system, so ticking
the object component is

(Data)
7 //Proces

ck

Object Object Objects are processesed
 performing the

game logic.
in batch&

Object
Manage

&
Object
Manage

s mouse
cli
event

ment
System
(Data)

ment
System
(Data)

8 //Set
state to
selected

Object
&
Object
Manage

The object that received
the mouse click processes
it to set it's state to
selected.

Object
&
Object
Manage
ment
System
(Data)

ment
System
(Data)

9 //Add
green
circle
graphic

Object
&
Object
Manage

Set drawing info to say it
has a green circle around
it.

Object
&
Object
Manage
ment
System
(Data)

al
object
as child

ment
System
(Data)

 150

to
selected
object

1
0

//Tick
Graphic
s
System

System
(Ticked
) System

Ticking the graphics
system tells the graphics
Component to draw all
visible objects on the
screen.

Graphic
s 3D

1 //Get Graphic Object Get the view
1 visibl s 3D & e

ts
Manage

System

s and object
lists to draw.

Objec System Object

ment

(Data)
1 //Proces Graphic Graphic p
2

Ob

s 3D

s 3D
System

rocess the visible object
as a batch. s

Visible System
jects

1
3

//D
vis
ob and the view context.

raw
ibile
jects

Graphic
s 3D
System

Graphic
s 3D
System

Draw the objects based
on their graphics data,

A - 1.1.1.3.1.3.1.1.8 Building construct Unit
Type: public UseCase
Package: Play Starcraft

This unique order cause a building to construct a unit

A - 1.1.1.3.1.3.1.1.9 Give Building an order

Type: public UseCase
Pac

Most buildings h ilitary units,

ing research.

kage: Play Starcraft

ave the ability to carry out certain orders like constructing m
or perform

A - 1.1.1.3.1.3.1.1.10 Hold Position
Type UseCase: public

ac rcP kage: Play Sta raft

 151

Orders unit to c ca enemies to attack them.

A - 1.1.1.3.1.3.1.1.11 Manipulate Object Resources

stay at its urrent lo tion. Do not follow

Type: public UseCase
Package: Play Starcraft

e min rc a g tal object), you are reducing the
amount of resources available in that object.

A - 1.1.1.3.1.3.1.1.12 anipulate Player Resources

Wh n you e a resou e (from yser object or a crys

M
Type: public UseCase
Package: Play Starcraft

Add t he re s the s. Resources are used as "money" to build
and research.

A - 1.1.1.3.1.3.1.1.13 if Doable Commands

 / subtrac from t source player ha

Mod y
Type: public UseCase
Package: Play Starcraft

Display icons representing the commands available to the user at this time.

A - 1.1.1.3.1.3.1.1.14 ol Location

Patr
ype: public UseCaseT

Package: Play Starcraft

Unit will move back and forth in an attack ready state between the objects current
location and the target destination.

A - 1.1.1.3.1.3.1.1.15 Stop Movement
Type: public UseCase
Package: Play Starcraft

Orders a unit to halt its current movement command.

A - 1.1.1.3.1.3.1.1.16 Unit Construct Building
Type: public UseCase

 152

Package: Play Starcraft

This unique order causes a unit to construct a building

 153

A - 1.1.1.3.1.4 Design: Tick Starcraft System

The artifacts contained within this package show many of the architectural independent
artifcats reworked using the simple proposed design. They are merely meant to show
another view into how logic flows using the proposed architecture, and the simple design.

This shows the various "tick main-specific systems to
crea me of Starcraft(tm).

 diagram
te the ga

ing" of the different do

(from Tick AI System)

ck AI System

System
(Ticked)

(from Game Analysis - Use Case and Dynamic View)

Ti

(from Tick Graphics System)

Tick Graphics
System

(from Ti

Tick U

ck UI Component)

ser Interface

(fr

Tick O

om Tick Object Component)

bj ect System /
Game Logic

Tick Starcraft Game
System

(from Tick Network Component)

Tick Netw ork System

(from Tick Audio System)

Tick Audio System

Name: T ick Starcraft Game System
Author: Jeff Plummer
Version: 1.0
Created: 8/23/2003 7:41:29 PM
Updated: 11/5/2004 2:04:02 PM

T his diagram is speci fic to the simple
design used in this thesis.

«include»

«include»

«include»

«include»

«include»

«include»

Figure 66 : Tick Starcraft Game System

 154

A - 1.1.1.3.1.4.1.1.1 Tick Starcraft Game System
Typ public UseCasee:

c esign: Ti Starcraf

This design dependent use case represents the process of ticking all the domain-specific
m to reate the me beha

Pa

kage: D ck t System

co ponents c ga vior.

 155

A - 1.1.1.3.1.4.2 Tick AI System

king of the AI component that is
tm).

The diagram shows the use cases involved in the tic
needed for the game of Starcraft(

This diagram is speci fic to the simple
design used in this thesis.

Calculate unit action

Execute Map
Watcher

Calculate Next
Mov ement

Nav igate Map -
Pathfinding

Tick AI System

Name: T ick AI System
Author: Jeff Plummer
Version: 1.0
Created: 9/10/2003 10:00:01 PM
Updated: 11/4/2004 4:36:14 PM

System
(Ticked)

(from Game Analysis - Use Case and Dynamic View)

Attack

(from Design: Tick Starcraft System)

Tick Starcraft Game
System

«include»

«extend»

«include»

«include»
«include»

«extend»

re 67 : Tick AI System

Tick AI System

Figu

A - 1.1.1.3.1.4.2.1.1
Type: public UseCase
Package: Tick AI System

ck the ar lligence component. ExTi tificial inte ecute AI operations that determine what the

aft AI system will determine computer players' decisions, an object's next move,

ios

the objects intend to do next.

Starcr
and some AI state information.

Scenar

Tick AI System {Basic Path}.

Process objects.

don't AI system could provide

1. Request views/object lists of AI objects to process.
2. Read object AI related information (state, etc.).
3.

NOTE: Objects exist in a vacuum. The
ssaging, etc. for AI interactions to take place between objects. me

 156

System (Ticked)

(from Game Analysis - Use Case and Dynamic View)

Name: Design: T ick AI System (Component Sequence)
Author: Jeff Plummer
Version: 1.0
Created: 11/2/2004 1:05:37 PM
Updated: 11/5/2004 2:27:51 PM

This diagram is speci fic to the simple
design used in this thesis.

Artificial Intelligence Obj ect & Obj ect
Management System

(Data)

//T ick AI System

//Request Objects to Process

//Based on object info perform AI

//Update Object Data

This diagram shows the sequence of events at the component level that occur to
complete the "Tick AI System" use case.

Figure 68 : Design: Tick AI System (Component Sequence)

Design: Tick AI System (Component Sequence) Messages

I
D

Messag
e

From
Object

To
Object

Notes

1 //Tick
AI
System

System
(Ticked
)

Artificia
l
Intellige
nce

In this design the AI
resides in its own
component and will be
"ticked" to tell the AI
system to operate on a list
of objects.

2 //Reque
st
Objects
to
Process

Artificia
l
Intellige
nce

Object
&
Object
Manage
ment
System
(Data)

Request list(s) of objects
that require AI
processing.

3 //Based
on
object
info
perform

Artificia
l
Intellige
nce

Artificia
l
Intellige
nce

Objects are like state
machines and depending
on their state, different
types AI processing will
be done for each object.

 157

AI
4 //Updat Artificia Object After AI o

e l &

ment
System
(D

bject
processing has

ct data.
Object
Data

Intellige
nce

Object
Manage

completed, update the
obje

ata)

A - 1.1.1.3.1.4.2.1.2 Navigate Map - Pathfinding

Type: public UseCase
Package: Tick AI System

This represents the process that will analyze the map, and provide a potential path to a

location.

Artificial Intelligence Obj ect & Obj ect
Management System

(Data)

Name: Design: Navigate Map - Pathfinding (Component
Author: Jeff Plummer
Version: 1.0
Created: 12/23/2003 9:14:52 PM

 Sequence)

Updated: 11/5/2004 2:28:12 PM

This diagram is specific to the simple
design used in this thesis.

System (Ticked)

(from Game Analysis - Use Case and Dynamic View)

ref

Design: Tick AI System (Component Sequence)

Somewhere during the coarse of ticking
the AI component, an object needs to
perform movement AI.

//Request Map info relative to current object

//Calculate path

//Wri te movement info to object

omplete the "Navigate Map" use case.
 - Pathfinding (Component Sequence)

Design s

This diagram shows the sequence of events at the component level that occur to
c

Figure 69 : Design: Navigate Map

: Navigate Map - Pathfinding (Component Sequence) Message

I
D

Messag
e

From
Object

To
Object

Notes

1 System
(Ticked

Design:
Tick AI

 158

) System
(Compo
nent
Sequenc
e)

2 Design:
Tick AI
System
(Compo
nent
Sequenc
e)

Artificia
l
Intellige
nce

During the coarse of
ticking the AI system, an
object requires AI to
move, and therefore
needs to perform
pathfinding AI.

3 //Reque
st Map
info
relative
to
current
object

Artificia
l
Intellige
nce

Object
&
Object
Manage
ment
System
(Data)

The object system has
map and traversability
information.

4
e

//Calcul
ate path

Artificia
l

Artificia
l

Perform pathfinding AI
to determine th

Intellige
nce

Intellige
nce

movement path the object
should take.

5 //Write Artificia Object

(Data)

Update the object with
movem
ent info

l
Intellige

&
Object

the movement
information.

to
object

nce Manage
ment
System

A - 1.1.1.3.1.4.2.1.3 Attack
Typ public UseCasee:
Package: Tick AI System

e c s k" le and send out an attack
mes t s uld rem hitpoin

A - 1.1.1.3.1.4.2.1.4 Calculate AI

Wh n an obje

sage, tha
t perform
ho

 an "attac
ove

 action, the object will cyc
ts, etc.

State
Typ public UseCasee:
Package: Tick AI System

 159

A - 1.1.1.3.1.4.2.1.5 Calculate Next Movement

Typ public Usee: Case

stem Pac Tick AI Sy

te e ne e t direction. This depends on the object's state and
destination. For example if the unit is resource gathering it's movement should sort of
"wander" around the resource gathering resources. If it's a move or attack command

e ld th pa

Exa s:

1. M (move toward get l
2. M O_ATTACK ow
3. ATTACKING (Object shouldn't move)

An e ect attacking it, the object would change

e O _A t and forth while it attacks the
flee atur

 - 1.1.1.3.1.4.2.1.6 Calculate unit action

kage:

De rmine th object's xt movem n

stat , it shou

mple state

OVE
OVE_T

xample of an object chasing another obj

 move in e fastest

the tar
 (move t

th to the target.

ocation)
ard the target object)

stat s from M
ing cre

VE_TO
e.

TTACK o ATTACKING back

A
ype: public UseCaseT

Package: Tick AI System

tate and determine it's next course of action.

e map watcher may have put the object in an "attack" state or "move to attack" state in

A - 1.1.1.3.1.4.2.1.7 Execute Map Watcher

For each unit, review the object s

Th
which it will move or attack.

Type: public UseCase
Package: Tick AI System

NOTE: This is just one possible way of doing things.

Map watcher tracks object zones. Objects register zones to watch, when an object enters
their zone, they receive a message.

 160

All objects will register a zone of sight so they receive messages when an enemy

 the object until it enters it's "attack"

zone. When an object enters it's "attack" zone it attacks.

becomes visible.

Objects will also register "attack" and "move to attack" zones. When an enemy enters the
"move to attack" zone, the object will move toward

 161

A - 1.1.1.3.1.4.3 Tick Audio System

The diagram shows the use cases involved in the ticking of the Audio component that is
needed for the game of Starcraft(tm).

This diagram is speci fic to the simple
design used in this thesis.

Tick Audio System

System
(Ticked)

(from Game Analysis - Use Case and Dynamic View)(from Design: Tick Starcraft System)

Game System
Tick Starcraft

Name: T ick Audio System
Author: Jeff Plummer
Version: 1.0
Created: 12/22/2003 11:35:46 PM
Updated: 11/4/2004 4:36:49 PM

«include»

 - 1.1.1.3.1.4.3.1.1 Tick Audio System

Figure 70 : Tick Audio System

A
yp UseCaseT e: public
ac e: Tick di

k io n ac lay sound effects that have
been signaled.

1. Get List of objects ma ds from obj component.
2.

Scenarios

 A tem

P

kag Au o System

Tic the aud compone t. Play B

king soun

kground music, and p

Tick udio Sys {Basi
obj
dio rela

c P
q t views/ ect lists cess.

 Rea Au ted tc.).
q s

ath}.
 of Audio objects to pro
 information (state, e

1. Re
2.
3. En

ues
d object
ue sound

 162

System (Ticked)

(from Game Analy d Dynamic View)sis - Use Case an

Name: Design: T ick A
uthor: Jeff Plummer

sion: 1.0

udio System (Component Sequence)

ted: 11/2/2004 1:24:02 PM
dated: 11/5/2004 2:28:37 PM

This diagram is specific to the simple
design used in this thesis.

Audio Obj ect & Obj ect
Management System

(Data)

//T ick Audio Component

//Request l ist of relavant objects making sound

//Pla

A
Ver
Crea
Up

y the sound

Thi t level that occur to
com .

omponent Sequence) Messages

s diagram shows the sequence of events at the componen
plete the "Tick Audio System" use case

Figure 71 : Design: Tick Audio System (Component Sequence)

Design: Tick Audio System (C

I
D

Messag
e

From
Object

To
Object

Notes

1 //Tick
Audio

System
(Ticked

Audio In this design the Audio
resides in its own

Compo
nent

) component and will be
"ticked" to tell the Audio
system to operate on a list
of objects.

2 //Reque
st list of
relavant
objects
making
sound

Audio Object
&
Object
Manage
ment
System
(Data)

Request list of objects
near the "camera" that are
currently making sounds.

3 //Play
the
sound

Audio Audio Send the sounds to the
sound card

 163

 164

A - 1.1.1.3.1.4.4 Tick Graphics System

The diagram shows the use cases involved in the ticking of the Graphics component that
is needed for the game of Starcraft(tm).

Update Command
Button View

Tick Graphics
System

Update All View s
Update Main View

Update Mini M ap
View

Update Protrait View

Update Status View

Draw Main View
Terrain

Draw Main View
Obj ects

Update View Update View Obj ect

Name: T ick Graphics Com ponent
Author: Jeff Plum mer
Version: 1.0
Created: 9/11/2003 11:53:12 AM
Updated: 11/4/2004 4:37:17 PM

T his diagram is speci fic to the sim ple
design used in this thesis.

«include»

«extend»

«extend»

«extend»

«extend»

«include»

«include»

«extend»

«include»

«include»

«include»

«include»

«include»

«include»

 72 : Tick Graphics Component

A - 1.1.1.3.1.4.4.1.1 :IGraphicsOb

Figure

jectSystem
quence instance : (IGrapType: public «interface» Se hicsObjectSystem)

Package: Tick Graphics System

A - 1.1.1.3.1.4.4.1.2 Up iew

date V Object
Typ public Usee: Case

hics SysPackage: Tick Grap tem

This use case represents the function date each individual object visible

 the view.

ality required to up
in

 165

T his diagram is speci fic to the simple
design used in this thesis.

Name: Design: Update View Object (Component Sequence)
Author: Jeff Plummer
Version: 1.0
Created: 11/2/2004 2:09:30 PM
Updated: 11/5/2004 2:29:01 PM

System (Ticked)

(from Game Analysis - Use Case and Dynamic View)

Obj ect & Obj ect
Management System

(Data)

Graphics

ref

Design: Update View - (Component Sequence)

//Update View Object Data

This diagram shows the sequence of events at the component level that occur to
complete the "Update View Object" use case.

Figure 73 : Design: Update View Object (Component Sequence)

Design: Update View Object (Component Sequence) Messages

I
D

Messag
e

From
Object

To
Object

Notes

1 System
(Ticked
)

Design:
Update
View -
(Compo
nent
Sequenc
e)

2 Design:
Update
View -
(Compo
nent
Sequenc
e)

Graphic
s

3 //Updat
e View

Graphic
s

Object
&

Update things like
animation state, screen

 166

Object Object

ment
System
(Data)

coordinates etc.
Data Manage

A - 1.1.1.3.1.4.4.1.3 Tick Graphics System
Type: public UseCase
Package: Tick Graphics System

Tick the graphics component. Draw whatever needs to be drawn.

Starcraft has several different viewports that need to be drawn, as well as the gui. Things
like the main view, the minimap etc.

Scenarios

Tick Graphics System {Basic Path}.
ject lists of objects to graphically proc1. Request views/ob ess.

2. Read object graphics related information (position, graphics resource.).
3. Process/Draw objects.

 - 1.1.1.3.1.4.4.1.4 Update View

A
ype: public UseCaseT
ackage: Tick Graphics System

 that is extended by the specialized view updates.

P

Update view is the generic functionality

 167

System (Ticked)

(from Game Analysis - Use Case and Dynamic View)

Graphics 3D System Obj ect & Obj ect
Management System

(Data)

Name:
Author:
Version:
Created:
Updated:

D w - (Com
Jef
1.
2/ PM
11 PM

esign: Update Vie
f Plummer

0
21/2004 2:51:17
/5/2004 2:29:13

ponent Sequence)
T his diagram is spec
design used in this thes

i fic to the simple
is.

//T ick Graphics System

//Get View

//Update View

//Get Objects in View

//Draw the objects

This diagra the sequenc nent level that occur to
complete th te View" use

e 74 : Design: Update View - (Component Sequence)

Des at - (C nent Sequence) Messages

m shows
e "Upda

Figur

e of events at the compo
 case.

ign: Upd e View ompo

I
D

Messag
e

From
Object

To
Object

Notes

1
(Ticked
)

c
s 3D
System

hics resides in its
ponent and will

be "ticked" to tell the
graphics system to
operate on a list of
objects.

//Tick
Graphic
s
System

System Graphi In this design the
grap
own com

2 //Get

Graphic Object Requ
drawn. View s 3D &

System Object
Manage
ment

est view to be

 168

System
(Data)

3 //Updat Graphic Grap
e Vie s 3D s 3D w

hic Update a view that is to
be drawn

System System
4 //Get

Objects
in View

Graphic
s 3D
System

Object
&
Object
Manage

Get the objects that are
visible in that view.

ment
System
(Data)

5 //Draw
the
objects

Graphic
s 3D
System

Graphic
s 3D
System

Draw the objects using
the view context.

Game System Graphics Component Object System

:CDemoApplication

(from Update View)

«interface»
:IGraphicsSystem

(from Update View)

:CGraphicsSystem

(from Update View)

«interface»
:IGraphicsObj ectSystem

:CGraphicsView Processor

(from Update View)

«interface»
:IGraphicsView

(from Update View)

Create a new view processor i f this
view does not yet have an Graphics
View Processor attached.

«interface»
:IGraphicsSceneManager

(from Update View)

«interface»
:IProcessableGraphicsObj ect

(from Update View)

:CGraphicsProcessorObj ect

(from Update View)

Create Graphics Object
Processor Object i f
necessary.

Name: Design: Update View (Class-Interface Sequence)
Author: Jeff Plummer
Version: 1.0
Created: 11/9/2004 1:45:32 PM
Updated: 11/9/2004 1:52:05 PM

The simple design is NOT presented as THE DESIGN TO USE for
this archi tecture. It is merely a simple implementation of this
archi tecture.

«interface»
:I2DSpriteGraphicsObj ect

(from Update View)

«interface»
I2DGraphicsObj ect

gsT ickGraphicsSystem(tDiff)

gsT ickGraphicsSystem(tDiff)

IGraphicsViewIterator*:= gsGetGraphicsViews()

IGraphicsViewProcessor*:= gsGetGraphicsViewProcessor()

CGraphicsViewProcessor(pView,pScreen)

gsAssignGraphicsViewProcessor(viewProc)

processView()

IGraphicsSceneManager*:= gsGetSceneManager()

IGraphicsObjectIterator*:= gsGetGraphicsObjects()

IGraphicsProcessorObject*:= gsGetGraphicsProcessorObject()

CGraphicsProcessorObject(pObject)

gsAssignGraphicsProcessorObject(procObj)

IStringIterator*:= gsGetGraphicsResources()

//Create 2D Spri te

drawGraphicsObject()

point2f&:= gsGetWorldPosition()

point2d&:= gsCurrentImageOffsetInResource()

//Draw the object using SDL

Fi)

ges

gure 75 : Design: Update View (Class-Interface Sequence

Design: Update View (Class-Interface Sequence) Messa

I
D

Messag
e

From
Object

To
Object

Notes

1 gsTick Interface - Tick the

 169

Graph
sSyste
m(float

ic

)

Graphics system.

2

e

 plementation - Tick
the Graphics System.

gsTick
Graphic
sSyst
m(float)

Im

3 etG

ws()

ws of

process... This prototype
only contains one view.

gsG
raphics
Vie

 Interface - Get Vie
Graphics objects to

4

wPr

 Interface - Get the
rocessor

gsGetG
raphics
Vie
ocessor
()

Graphics View P
if it exists.

5

*,

ace*

 cessor if
t

this is our
first time processing this

CGraph
icsView
Process
or(IGra
phicsVi
ew
SDL_S
urf
)

Create a view pro
this view does not ye
have one - i.e.

view.

6 g

csView

IGra

essor*)

 gsAssi
nGraphi

Process
or(
phicsVi
ewProc

Interface - Assign the
view processor to the
view.

7 process
View()

 Graphics Process the
view

8 gsGetS
ceneMa

Interface - Get the
Scenemanager (structured

ects to process) nager() list of obj
9 gsGetG

raphics
Objects
()

 Interface - Get Ordered
list of objects to process.

1 gsGetG
0 raphics

Process

Interface - Get the
Graphics object processor
responsible for

 170

orObjec processin
t()

g this object.

1
1

CGraph
icsProc
essorOb
ject(IPr
ocessab
leGraph
icsObje
ct*)

 Create Graphics Object
Processor Object if
necessary.

1
2

gsAssig
nGraphi
csProce
ssorObj
ect(IGr
aphicsP
rocesso
rObject
*)

 Interface - Assign the
processor object to the
game object.

1
3

gsGetG
raphics
Resourc
es()

 Interface - Get the
Graphics Resource
information required to
draw the object in 2D.

1
4

//Create
2D
Sprite

 Create the entity using
SDL to manage sprites.

1
5

drawGr
aphicsO
bject()

 Perform Graphics
Processing on this object

1
6

gsGetW
orldPos
ition()

 I2DGra
phicsOb
ject

Get the position of the 2D
object

1
7

gsCurre
ntImage
OffsetI
nResou
rce()

 Interface - Get the sprite
offset in the 2D image

1
8

//Draw
the
object
using
SDL

 Use SDL to blit the sprite

 171

A - 1.1.1.3.1.4.4.1.5 Update Main View
Type: public UseCase

ackage: Tick Graphics System

Represents the process of the main display window updating to display the current state
of the game.

Scenarios

Basic

P

 {Basic Path}.
1. Get view frame (area to display).
2. Draw Terrain
3. Draw Objects

A - 1.1.1.3.1.4.4.1.6 Draw Main View Objects
Type: public UseCase

ackage: Tick Graphics System

raw the game objects over the background.

in View Terrain

P

D

A - 1.1.1.3.1.4.4.1.7 Draw Ma
Type: public UseCase
Package: Tick Graphics System

aint the terrain background on the screen.

ll Views

P

A - 1.1.1.3.1.4.4.1.8 Update A
Type: public UseCase
Package: Tick Graphics System

"views" displayed on the screen during game play. There is

A - 1.1.1.3.1.4.4.1.9 Update Command Button View

The Starcraft game has many
a mini-map view, the main game view, etc. Each of these views needs to be drawn.

Type: public UseCase

e: Tick Graphics System Packag

This vi available for the selected
object(

ew contains buttons that represent all the commands
s).

 172

A - 1.1.1.3.1.4.4.1.10 Update Mini Map View
Type: public UseCase
Package: Tick Graphics System

Update the small view that shows a miniature view of the entire game map.

 - 1.1.1.3.1.4.4.1.11 Update Protrait View

A
Type: public UseCase
Package: Tick Graphics System

Update the trait view that shows a picture o pro r animation of the currently selected

ject(s).

A - 1.1.1.3.1.4.4.1.12 Update Status View

ob

eType: public UseCas
 System

e status view shows the health and other stats of the currently selected object(s).

Package: Tick Graphics

Th

 173

A - 1.1.1.3.1.4.5 Tick Network Component

The diagram shows the use cases involved in he ticking of the Network component that
is needed for the game of Starcraft(tm).

 t

Tick Netw ork
System

Broadcast local
obj ects TO serv er

Update obj ects
FROM serv er

Name: T ick Network Component
Author: Jeff Plum mer
Version: 1.0
Created: 9/11/2003 12:01:01 PM
Updated: 11/4/2004 4:37:53 PM

This diagram is specific to the sim ple
design used in this thesis.

(from Design: Tick Starcraft System)

Game System
Tick Starcraft System (Ticked)

(from Game Analysis - Use Case and Dynamic View)

«include»

«include»

«include»

 - 1.1.1.3.1.4.5.1.1 Broadcast local objects TO server

Figure 76 : Tick Network Component

A
Type: public UseCase

s of server, so other
tworked players can update their client machines.

narios
Basic Path

Package: Tick Network Component

The action the player controlled objects are broadcast to the
ne

Sce

 {Basic Path}.
1. Request necessary objects from Object Component -
 (This will become more clear in the component interfaces, but basically the
object component will send a list of objects that are likely to be needed by the

 Sen nges to server.
network).
2. d relevant cha

A - 1.1.1.3.1.4.5.1.2 Tick Network System
Type: public UseCase
Package: Tick Network Component

ond to messages that have arrived from the network.

Send outgoing messages and resp

 174

Scenarios

Tick Network System {Basic Path}.
1. Read received data.
2. Update objects with received data
3. Request views/object lists of objects to write out to network.
4. Read object information to send (state, etc.).
5. Send info.

.

System (Ticked)

(from Game An Dynamic View)alysis - Use Case and

Name: k System (Component Sequence)
Author:
Version:

ed:
ted: PM

Design: T ick Networ
Jeff Plummer
1.0
11/2/2004 7:43:Creat

Upda
46 PM

11/5/2004 2:29:37

Netw ork Obj ect & Obj ect
Management System

(Data)

This diagram is speci fic to the simple
design used in this thesis.

//T ick Network Component

//Process Received Network Data

//Update gam e objects with received data

//Process Data to Send

//Request relavant obects that want to send network data

//Send data across network

This diagra shows t sequenc nt level that occur to
c e th e t

F e 77 : gn: T onent Sequence)

Design: Tick Network System (Component Sequence) Messages

m
e "Tick N
igur

he
twork Sys
 Desi

e of events at the compone
em" use case.
ick Network System (Comp

omplet

I
D

Messag
e

From
Object

To
Object

Notes

1 //Tick
Networ
k

System
(Ticked
)

k
In this design the network
resides in its own
com

Networ

ponent and will be

 175

Compo
nent

"ticked" to tell the
network system to
operate on a list of
objects.

2 //Proces Networ Networ The network receivin
s
Receive

or

k k
g of

network data is in it's
own thread, but act of

ng something
meaningful with the
network data is
performed in the main

d doi
Netw
k Data

tick.

3 //Updat
e game

Networ
k

Object
&

Update the proper local

objects
with
receive
d data

Object
Manage
ment
System
(Data)

objects with the updates
that came from the
network.

4 //Proces
s Data
to Send

Networ
k

Networ
k

5 //Reque
st
relavant
obects
that
want to
send
network
data

Networ
k

Object
&
Object
Manage
ment
System
(Data)

The object managment
system will determine
which objects are
relavant to networked
computers and should
send their network data.

6 //Send
data
across
network

Networ
k

Networ
k

Send the proper data
across the network.

A - 1.1.1.3.1.4.5.1.3 Update objects FROM server
Type: public UseCase
Package: Tick Network Component

Data will arrive from the server detailing the actions of networked players actions. The
network component will send the updates to the object component.

 176

A - 1.1.1.3.1.4.6 Tick Object Component

The diagram shows the use cases involved in he ticking of the Object component (game
logic) that is needed for the game of Starcraft(tm).

 t

T his diagram is speci fic to the simple
design used in this thesis.

Tick Obj ect
System / Game

Logic
Update

Commander Obj ect

Name: T ick Object Component
Author: Jeff Plummer
Version: 1.0
Created: 9/11/2003 11:40:25 AM
Updated: 11/4/2004 4:38:11 PM

(from Design: Tick Starcraft System)

Tick Starcraft
Game System

System (Ticked)

(from Game Analysis - Use Case and Dynamic View)

Update Controlled
Obj ect

«include»

«include»

«include»

Figure 78 : Tick Object Component

/ Game Logic

A - 1.1.1.3.1.4.6.1.1 Tick Object System
ype: public UseCaseT
ackage: Tick Object Component

Tick the object component. The object component is responsible for performing an
actual action based on state information.

Starcraft's object system
animation state

 this simple design game logic and object management exist in the same component.
will provide relavant

bje

i sight thi , an logic truly should be its own component. But since its
e t a e , it e prototype.

 Ob ect System / Game L

P

 might evaluate the "Attacking" state and fire a bullet, change
s, etc.

In
The object management portion updates the view structures so it

bject lists. The game logic portion performs some minor game logic processing of o
o

In h

cts.

nd s is bad d game
a d sign, no

Scenarios

rchitectur

j

problem wasn't worth fixing in th

ogic Tick {Basic Path}.
s
of objects to process.

1. Update Views / object list
2. Request views/object lists

a ga re , etc.). 3. Re d object me logic lated information (state

 177

4. Pro

cess objects

.

Name: Design: T ick Object / Game Logic System (Component Sequence)
Author: Jeff Plummer
Version: 1.0
Created: 11/2/2004 8:06:20 PM
Updated: 11/5/2004 2:30:15 PM

This diagram is specific to the simple
design used in this thesis.

System (Ticked)

(from Game Analysis - Use Case and Dynamic View)

Obj ect & Obj ect
Management System

(Data)

//T ick Object System

//T ick Commander Objects

//T ick Unit Objects

This diagram shows the sequence of events at the component level that occur to
complete the "Tick Object / Game Logic System" use case.

Figure 79 : Design: Tick Object / Game Logic System (Component Sequence)

Design: Tick Object / Game Logic System (Component Sequence) Messages

I
D

Messag
e

From
Object

To
Object

Notes

1 //Tick
Object
System

System
(Ticked
)

Object
&
Object
Manage
ment
System
(Data)

This is equivalent to
telling the game to
perform game logic.

2 //Tick
Comma
nder
Objects

Object
&
Object
Manage
ment

Object
&
Object
Manage
ment

Tell the commanders to
perform general game
logic for the units it
commands.

 178

System System
(Data) (Data)

3 //Tick
Unit
Objects

Object
&
Object
Manage
ment
System
(Data)

Object
&
Object
Manage
ment
System
(Data)

Perform Game logic on
the individual units
themselves.

A - 1.1.1.3.1.4.6.1.2 Update Commander Object
Type: public UseCase
Package: Tick Object Component

This use case represents the object performing the game logic relavant to the object.

The commander is respon r the omputer
player.

Scenarios

Basic Path

sible for performing the general strategy fo c

 {Basic Path}.

Upd movement dir.
2. Perform action depending on state:
 - If an object is in an ATTACKING state, it would fire it's weapon.
 - etc.

A - 1.1.1.3.1.4.6.1.3 Update Controlled Object

DESCRIPTION:

1. ate position based on speed and

Type: public UseCase

 Tick Object Component Package:

epresents performing game logic for an individual unit in the game.

R

 179

A - 1.1.1.3.1.4.7 Tick UI Component

The diagram shows the us ases inv e UI component that is
need he St m).

e c
arcraft(t

olved in the ticking of th
ed for t game of

T his diagram is specific to the simple
design used in this thesis.

Process Keyboard

Process Mouse

Tick User Interface

Name: T ick UI Component
lummer

/2003 10:59:32 PM
/2004 4:38:27 PM

Author: Jeff P
Version: 1.0
Created: 9/10
Updated: 11/4

(from Design: Tick Starcraft System)

Game System
Tick Starcraft System (Ticked)

(from Game Analysis - Use Case and Dynamic View)

«include»

«include»

«include»

Figure 80 : Tick UI Component

A - 1.1.1.3.1.4.7.1.1 Process Keyboard
ype: public UseCase T

P

ackage: Tick UI Component

A - 1.1.1.3.1.4.7.1.2 Process Mouse
Type: public UseCase

ackage: Tick UI Component P

A - 1.1.1.3.1.4.7.1.3 Tick User Interface
Type: public UseCase

ackage: Tick UI Component

processes all forms of input.

P

Tick the User Interface Component. Reads and

 180

Starcraft UI system will read mouse movements and mouse clicks.

Scenarios

Tick User Interface

 {Basic Path}.
1. Read captured keyboard/mouse events

er objects.
board/mouse listener objects.

2. Request views of keyboard/mouse listen
3. Update game logic key

System (Ticked)

(from Game Analysis - Use Case and Dynamic View)

Name: Design: T ick User Interface (Component Sequence)
Author: Jeff Plummer
Version: 1.0
Created: 11/2/2004 8:14:10 PM
Updated: 11/5/2004 2:30:39 PM

This diagram is specific to the simple
design used in this thesis.

User Interface Obj ect & Obj ect
Management System

(Data)

//T ick UI Component

//Update UI Event Listening Objets

This diagram shows the sequence of events at the component level that occur to
complete the "Tick User Interface System" use case.

Figure 81 : Design: Tick User Interface (Component Sequence)

Design: Tick User Interface (Component Sequence) Messages

I
D

Messag
e

From
Object

To
Object

Notes

1 //Tick System User While the UI event
UI

nt

(Ticked Interfac collection may occur in a
read, the main

thread (tick) will takes
those events and process

em.

Compo
ne

) e seperate th

th
2 //Updat

e UI
Event

terfac
e

t User
In

Objec
&
Object

Update the objects that
are responsible for
receiving UI events.

 181

Listenin
g
Objets

)

When these UI Listening
objects get ticked during
the "tick object
component" game logic
will do something based
on the UI events.

Manage
ment
System
(Data

 182

A - 1.1.1.4 Unreal Tournament

This package represents the analysis and design work performed for the game Unreal

 - 1.1.1.4.1 Use Cases

Tournament(tm).

A

Play Unreal Tournament

+ Col lect Ammo
+ Col lect Health
+ Col lect Item
+ Col lect Weapon
+ Jump
+ Move
+ Rotate
+ Shoot

Player

(from Game Analysis - Use Case and Dynamic View)

System

(from Game Analysis - Use Case and Dynamic View)

System (Ticked)

(from Game Analysis - Use Case and Dynamic View)

Name: Use Cases Model
Author: Jeff Plummer
Version: 1.0
Created: 10/26/2004 9:50:53 AM
Updated: 11/4/2004 4:38:52 PM

Design: Tick

+ T ick AI System
+ T ick Audio Component
+ T ick Graphics 3D Component
+ T ick Network Component
+ T ick Object Component
+ T ick Physics Component
+ T ick Unreal Tournament Game System

Figure 82 : Use Cases Model

 183

A - 1.1.1.4.1.1 Play Unreal Tournament

Player

(from Game Analysis - Use Case and Dynamic View)

Mov e

Shoot

Collect Weapon

Collect Item Collect Health

Collect Ammo

Name: Play Unreal T ournament
Author: Jeff Plummer
Version: 1.0
Created: 10/26
Updated: 11/4/2

/2004 9:51:29 AM
004 4:39:05 PM

Rotate

Jump

«extend»
«extend»

«extend»

«extend»

«include»

ay Unreal Tournament

A - 1.1.1.4.1.1.1.1.1 Collect Ammo

Figure 83 : Pl

Type: public UseCase
Package: Play Unreal Tournament

A - 1.1.1.4.1.1.1.1.2 Collect Health
Type: public UseCase
Package: Play Unreal Tournament

A - 1.1.1.4.1.1.1.1.3 Collect Item
Type: public UseCase
Package: Play Unreal Tournament

 184

Player

(from Game Analysis - Use Case and Dynamic View)

Game Logic

(from Modules)

Game Data

odules)(from M

ref

Analysi les Inv olv ed)

Anal Module
Author: Jeff
Version: 1.0
Created: 11/ 0:50 PM
Updated: 11/4/ 39:13 PM

s: Mov e (Logical M odu

Name: ysis: Col lect Item (Logical
 Plum mer

2/2004 9:2
2004 4:

s Involved)
At the analysis level, these interactions a
design. They merely show which logica
not necessarily how the function

re not meant to show
l modules are involved,

ality gets implemented.

//Get objects that col l ided data

//Perform gam e logic due to col l i sion

Figure 84 : Analysis: Modules Involved)

a ollect Item (Logical Mo s

 Collect Item (Logical

An

lysis: C dules Involved) Message

I
D

Messag
e

From
Object

To
Object

Notes

1 Player

 Analysi
s: Move
(Logical
Module
s
Involve
d)

2
s: Move
(Logical
Module
s
Involve
d)

 a
n

 Analysi Game
Logic

A movement results in
player's collision with a
"item" game object.
Could be a weapon, or
health, etc.

3 //Get
objects
that

Game
Logic

Game
Data

 185

collided
data

4 //Perfor
m game

o

n

Game
Logic

Game
Logic

Could be to increase
player health, add ammo,

logic etc.
due to
collisi

A - 1.1.1.4.1.1.1.1.4 Collect Weapon
Type: public UseCase
Package: Play Unreal Tournament

A - 1.1.1.4.1.1.1.1.5 Jump
Type: public UseCase
Package: Play Unreal Tournament

A - 1.1.1.4.1.1.1.1.6 Move
Type: public UseCase
Package: Play Unreal Tournament

 186

Player

(from Game Analysis - Use Case and Dynamic View)

Name: Analysis: Move (Logical Modules Involved)
Author: Jeff Plummer
Version: 1.0
Created: 11/2/2004 9:12:33 PM
Updated: 11/4/2004 4:39:22 PM

At the analysis level, these interactions are not meant to show
design. They merely show which logical modules are involved,
not necessarily how the functionality gets implemented.

User Interface

(from Technology Modules)

Game Logic

(from Modules)

Game Data

(from Modules)

Physics

(from Technology Modules)

//InputEvent (arrow key or joystick m ovement)

//Send UI Event to Game Logic

//Interpret Movement - Move

//Update player posi tion

//Perform col l ision detection and reaction

//Perform col l ision logic

Figure 85 : Analysis: Move (Logical Modules Involved)

Analysis: Move (Logical Modules Involved) Messages

I
D

Messag
e

From
Object

To
Object

Notes

1 //InputE
vent
(arrow
key or
joystick
movem
ent)

Player User
Interfac
e

Player presses the an
arrow movement key or
moves the joystick
signalying an event.

2 //Send

Event
to
Game

User
Interfac

Game
Logic

The game logic will
determine how to UI

e interpret the UI event.

Logic
3 //Interpr Game Game The game logic

et
Movem
ent -
Move

ines that the
 position needs to

be moved based on the
input command.

Logic Logic determ
players

 187

4 //Updat
e player
position

ta
Game
Logic

Game
Da

Update the player's
position data.

5 or
m
collisio
n

on

Game
Logic

Its an arbitrary decision
to say that the physics
logical module performs
the collision detection.

g the trend.

//Perf

detectio
n and
reacti

Physics

This seems to be the
trend in commercial
physics engines so I'm
just continuin

6 //Perfor
m
collisio

When you collide with
certain objects (ammo,
health, etc) game logic

n logic

Game
Logic

Game
Logic

needs to get involved.

A - 1.1.1.4.1.1.1.1.7 Rotate
CaseType: sepublic U
l TournPackage: Play rea ament

A - 1.1.1.4.1.1.1.1.8 Shoot

Un

Type: public UseCase
Package: Play Unreal Tournament

 188

A - 1.1.1.4.1.2 Design: Tick

Name: Design: T ick
Author: Jeff Plummer
Version: 1.0
Created: 11/2/2004 9:44:30 PM

2004 4:39:37 PMUpdated: 11/4/

Tick Unreal
Tournament Game

System

System (Ticked)

This diagr specific to the simple am is
design used in this thesis.

(from Tick Physics Component)

Tick Physics
Component

(from Tick AI System)

Tick AI System

(from Tick Audio Component)

Tick Audio
Component

(from Tick Graphics 3D Component)

(from Game Analysis - Use Case and Dynamic View)

Tick Graphics 3D
Component

(from Tick Network Component)

Tick Netw ork
Component

«include»

«include»

«include»

«include»

«include»

Figure 86 : Design: Tick

A - 1.1.1.4.1.2.1.1.1 System (Ticked)
Type: public Object
Package: Game Analysis - Use Case and Dynamic View

This actor represents the System but implies the actions occur on a regular or clocked
basis.

 189

A - 1.1.1.4.1.2.1.1.2 Tick Physics Component
Type: public UseCase
Package: Tick Physics Component

A - 1.1.1.4.1.2.1.1.3 Tick AI System
Type: public UseCase
Package: Tick AI System

Tick the artificial intelligence component. Execute AI operations that determine what the
the objects intend to do next.

Starcraft AI system will determine computer players' decisions, an object's next move,
and some AI state information.

Scenarios

Tick AI System {Basic Path}.
1. Request views/object lists of AI objects to process.
2. Read object AI related
3. P

NOTE: Objects don't exist in a vacuum. The AI system could provide

.

 - .2

information (state, etc.).
rocess objects.

messaging, etc. for AI interactions to take place between objects

A 1.1.1.4.1 .1.1.4 Tick Audio Component
e: public UseCaseTyp

i ne

A - 1.1.1.4.1.2.1.1.5 Tick Graphic

Package: Tick Aud o Compo nt

s 3D Component
Type: public UseCase

hics

te

Package: ap 3D Co

A - 1.1.1.4.1.2.1.1.6 No

Tick Gr mponent

Type: public Note

hics 3D Package: ap Co Tick Gr mponent

 190

This diagram is specific to the simple design used in this thesis.

 .2 ic rkA - 1.1.1.4.1 .1.1.7 T k Netwo Component
Typ see: public U Case

ork CPac Netw ompo

A - 1.2 ic nreal T em

kage: Tick nent

1.1.1.4. .1.1.8 T k U ournament Game Syst
Type: Usepublic Case

ck Package: Design: Ti

 191

A - 1.1.1.4.1.2.2 Tick AI System

(from Design: Tick)

Tick Unreal
Tournament Game

System

System (Ticked)

(from Game Analysis - Use Case and Dynamic View)

Tick AI System Tick Player Tick Proj ectile

Name: T ick AI System
Author: Jeff Plummer
Version: 1.0
Created: 11/2/2004 9:46:18 PM
Updated: 11/4/2004 4:39:43 PM

This diagram is specific to the simple
design used in this thesis.

«include»«include»«include»

Figure 87 : Tick AI System

A - 1.1.1.4.1.2.2.1.1 Tick Unreal Tournament Game System
Type: public UseCase
Package: Design: Tick

A - 1.1.1.4.1.2.2.1.2 System (Ticked)
Type: public Object
Package: Game Analysis - Use Case and Dynamic View

This actor represents the System but implies the actions occur on a regular or clocked
basis.

A - 1.1.1.4.1.2.2.1.3 Note
Type: public Note
Package: Tick Graphics 3D Component

This diagram is specific to the simple design used in this thesis.

A - 1.1.1.4.1.2.2.1.4 Tick AI System
Type: public UseCase

 192

Package: Tick AI System

Name: Design: T ick AI System (Component Sequence)
Author: Jeff Plummer
Version: 1.0
Created: 11/2/2004 10:02:58 PM
Updated: 11/4/2004 4:39:54 PM

This diagram is specific to the simple
design used in this thesis.

Artificial Intelligence Obj ect & Obj ect
Management System

(Data)

System (Ticked)

(from Game Analysis - Use Case and Dynamic View)

//T ick AI System

//Request Objects to Process

//Based on object info perform AI

//Update Object Data

Desig

Figure 88 : Design: Tick AI System (Component Sequence)

n: Tick AI System (Component Sequence) Messages

I
D

Messag
e

From
Object

To
Object

Notes

1 //Tick
AI
System

System Artificia In this design the AI

system to operate on a list

) Intellige
nce

component and will be
"ticked" to tell the AI

(Ticked l resides in its own

of objects.
2 //Reque

st
Objects
to
Process

Artificia Object

ment

Request list(s) of objects
l & that require AI
Intellige
nce

Object
Manage

System

processing.

 193

(Data)
3 //Based

on
object
info
perform
AI

Artificia

Intellige

Artificia

Intellige

Objects are like state

on their state, different

be done for each object.

l l machines and depending

nce nce types AI processing will

4 //Updat
e
Object
Data

Artificia

Intellige

Object

Object

ment

(Data)

After AI object

completed, update the
l & processing has

nce Manage object data.

System

A - 1.1.1.4.1.2.2.1.5 Tick Player
Type: public UseCase
Package:

Tick each co

A - 1.1.

Tick AI System

mputer and human controlled player object.

1.4.1.2.2.1.6 Tick Projectile
public UseCase
Tick AI System

Type:
Package:

This is an arbi
tick all the
functional

trary decision, we are saying as part of ticking the player, the player will
 projectiles the player has created. Basically this is simply for network player
ity distribution.

 194

A - 1.1.1.4.1.2.3 Tick Audio Component

System (Ticked)

(from Game Analysis - Use Case and Dynamic View)
(from Design: Tick)

Tick Unreal
Tournament Game

System

Tick Audio

Author: Jeff Plummer
Name: T ick Audio Component

T his diagram is specific to the simple
design used in this thesis.Version: 1.0

Created: 11/3/2004 9:32:01 AM
Updated: 11/4/2004 4:40:11 PM

Component«include»

Figure 89 : Tick Audio Component

A - 1.1.1.4.1.2.3.1.1 Tick Audio Component
Type: public UseCase
Package: Tick Audio Component

Audio Obj ect & Obj ect

Management System
(Data)

System (Ticked)

(from Game Analysis - Use Case and Dynamic View)
//T ick Audio Component

//Request l ist of relavant objects making sound

//Play the sound

Name: Design: T ick Audio System (Component Sequence)
Author: Jeff Plummer This diagram is specific to the simple
Version: 1.0 design used in this thesis.
Created: 11/3/2004 9:33:19 AM
Updated: 11/3/2004 9:35:23 AM

 195

Design: Tick Audio System (Component Sequence) Messages

Figure 90 : Design: Tick Audio System (Component Sequence)

I
D

Messag
e

From
Object

To
Object

Notes

1 //
Audio
Compo
nent

(Ticked resides in its own

"ticked" to tell the Audio

of objects.

Tick System Audio In this design the Audio

) component and will be

system to operate on a list

2 //Re
st list of
relava
objects
making
sound

&

Manage

System

near the "camera" that are
que Audio Object Request list of objects

nt Object currently making sounds.

ment

(Data)
3 //Play

the
sound

Audio Audio Send the sounds to the
sound card

 196

A - 1.1.1.4.1.2.4 Tick Graphics 3D Component

Name: T ick Graphics 3D Component
Author: Jeff Plummer
Version: 1.0
Created: 11/3/2004 9:35:30 AM
Updated: 11/4/2004 4:40:29 PM

This diagram is speci fic to the simple
design used in this thesis.

Update Main Play
View

System (Ticked)

(from Game Analysis - Use Case and Dynamic View)
(from Design: Tick)

Tournament Game
System

Tick Unreal
Tick Graphics 3D

Component
Update All

Graphical View s

Unreal T ournament Screenshot (main view and overlays)

«include»«include»

Update GUI

Update Character
Status Ov erlay

Ov erlays

Update Team
Score Ov erlay

Update
Weapon/Ammo

Ov erlay

«include» «include»«include»

«include»

«include»

A - 1.1.1.4.1.2.4.1.1 Tick Graphics 3D Component

Figure 91 : Tick Graphics 3D Component

Type: public UseCase
Package:

Tick Graphics 3D Component

 197

System (Ticked)

(from Game Analysis - Use Case and Dynamic View)

Graphics 3D System Obj ect & Obj ect
Management System

(Data)

//T ick Graphics 3D Component

//Request Views to Draw

//Update Graphical View

//Update Graphical Object (draw)

//Update Graphical Object Data

Name: Design: T ick Graphics 3D Component (Component Sequence)
Author: Jeff Plummer
Version: 1.0

This diagram is specific to the simple
design used in this thesis.

Created: 11/3/2004 12:19:25 PM
Updated: 11/4/2004 4:40:40 PM

Figu

D

re 92 : Design: Tick Graphics 3D Component (Component Sequence)

esign: Tick Graphics 3D Component (Component Sequence) Messages

I
D

Messag
e

From
Object

To
Object

Notes

1 //Tick
Graphic
s 3D
Compo
nent

System Graphic Ticking the graphics 3D
(Ticked
)

s 3D
System

component causes all
visible views and objects
to be drawn.

2 //Reque
st
Views
to Draw

Graphic
s 3D

Object
&

Request views (context
and object list) to draw.

System Object
Manage
ment
System
(Data)

3
e
Graphic
al View

//Updat Graphic Graphic For each view...
s 3D
System

s 3D
System

 198

4 //Updat
e
Graphic
al
Object
(draw)

Graphic
s 3D

Graphic
s 3D

Draw each graphical
object using the view

System System context.

5 //Updat
e

al
Object
Data

s 3D &

Manage

System

like screen coords that

systems.

Graphic Object Update an necessary data

Graphic System Object may be used by other

ment

(Data)

A - 1.1.1.4.1.2.4.1.2 Update All Graphical Views
public UseCase
Tick Graphics 3D Component

Type:
Package:

A - 1.1.1.4.1.2.4.1.3 Update Character Status Overlay
Type: public UseCase
Package:

A - 1.1.1.4.1.

Tick Graphics 3D Component

2.4.1.4 Update GUI Overlays
Type: public UseCase

ackage: Tick Graphics 3D Component

 - 1.1.1.4.1.2.4.1.5 Update Main Play View

P

A
Type: public UseCase
Package: Tick Graphics 3D Component

 199

System (Ticked)

(from Game Analysis - Use Case and Dynamic View)

Graphics 3D System Obj ect & Obj ect
Management System

(Data)

Name: Design: Update Main Play View (Component Sequence)
Author: Jeff Plummer
Version: 1.0
Created: 11/3/2004 12:14:14 PM
Updated: 11/4/2004 4:40:55 PM

This diagram is speci fic to the simple
design used in this thesis.

ref

Design: Tick Graphics 3D Component (Component Sequence)

//Request View

//Process View Context

//Process Graphical Objects

//Update Object Data

Figure 93 : Design: Update Main Play View (Component Sequence)

Design: Update Main Play View (Component Sequence) Messages

I
D

Messag
e

From
Object

To
Object

Notes

1 System
(Ticked
)

Design:
Tick
Graphic
s 3D
Compo
nent
(Compo
nent
Sequenc
e)

2 Design:
Tick
Graphic
s 3D
Compo
nent
(Compo

Graphic
s 3D
System

During the course of
ticking the graphics 3D
component we come to
this functionality of
updating the graphical
view.

 200

nent
Seq
e)

uenc

3 //Reque
st View

Graphic
s 3D

Object
&

Request the view to draw

System Object
Manage
ment
System
(Data)

from the object system.

4 //Proces
s View
Context

Graphic
s 3D
System

Graphic
s 3D
System

Understand things like
view size on screen,
coordinate system,
camera location, etc.

5 //Proces
s
Graphic
al
Objects

Graphic
s 3D
System

Graphic
s 3D
System

Draw the objects in the
object list of the view
using the view context.

6 //Updat
e
Object
Data

Graphic
s 3D
System

Object
&
Object
Manage
ment
System
(

Update things like screen
coords. data, etc. in case
other components require
that data.

Data)

A - 1.1.1.4.1.2.4.1.6 Update Team Score Overlay
seType: public UseCa

Package: Tick Graphics 3D Component

A - 1.1.1.4.1.2.4.1.7 Update Weapon/Ammo Overlay
Type: public UseCase

Tick Graphics 3D Component Package:

 201

A - 1.1.1.4.1.2.5 Tick Netw

ork Component

T his diagram is specific to the simple
design used in this thesis.

System (Ticked)

(from Game Analysis - Use Case and Dynamic View)
(from Design: Tick)

Tick Unreal
Tournament Game

System
Tick Netw ork

Component

Broadcast Local
Obj ects TO Serv er

Update Local
Obj ects FROM

Serv er

Nam
Author

e: T ick Network Component
: Jeff Plummer

Version: 1.0
Created: 11/3/2004 12:55:58 PM

ed:Updat 11/4/2004 4:41:07 PM

«include»

«include»

«include»

Figure 94 : Tick Network Component

A - 1.1.1.4.1.2.5.1.1 Broadcast Local Objects TO Server
pu eCaType: blic Us se

Package:

Ti rk

Tick Network Component

ck Netwo Component

A - 1.1.1.4.1.2.5.1.2
Type: public UseCase
Package: Tick Network Component

 202

Name: Design: T ick Network System (Component Sequence)
f Plummer

0
/3/2004 12:58:16 PM
4/2004 4:41:14 PM

Author: Jef
Version: 1.
Created: 11
Updated: 11/

Netw ork Obj ect & Obj ect
Management System

(Data)

This diagram is specific
design used in this thes

 to the simple
is.

System (Ticked)

(from Game Analysis - Use Case and Dynamic View)

//T ick Network Component

//Process Received Network Data

//Update game objects with received data

//Process Data to Send

//Request relavant obects that want to send network data

//Send data across network

g e Network System (Component Sequence)

Design: Tick Network System (Component Sequence) Messages

Fi ure 95 : D sign: Tick

I
D

Messag
e

From
Object

To
Object

Notes

1 //Tick
Networ

System
(Ticked

Networ In this design the network

k)
k resides in its own

component and will be
"ticked" to tell the
network system to

Compo
nent

operate on a list of
objects.

2 //Proces
s
Receive

k Data

N
k

Ne
k

f
network data is in it's

oing something
meaningful with the

tick.

d
Networ

etwor twor The network receiving o

own thread, but act of
d

network data is
performed in the main

3 //Updat
e game

Networ
k

Object
&

Update the proper local
objects with the updates

 203

objects

receive

Object
nage

ment

(Data)

that came from the
network. with Ma

d data System

4 //Proces
s Data

Networ
k

Networ
k

to Send
5 //Reque

relavant
obects
that
want to
send
network
data

Networ Object

Object
Manage
ment

The object managment

which objects are
relavant to networked
computers and should

st k & system will determine

System
(Data)

send their network data.

6 //Send
data
across
network

Networ
k

Networ
k

Send the proper data
across the network.

A - 1.1.1.4.1.2.5.1.3 Update Local Objects FROM Server
Type: public UseCase
Package: Tick Network Component

 204

A - 1.1.1.4.1.2.6 Tick Object Component

T h
de

is diagram is speci fic to the simple
sign used in this thesis.

System (Ticked)

(from Game Analysis - Use Case and Dynamic View)
(from Design: Tick)

Tick Unreal
Tournament Game

System
Tick Obj ect
Component

Name: T ick Object Component
Author: Jeff Plummer
Version: 1.0
Created: 11/3/2004 1:01:12 PM
Updated: 11/4/2004 4:41:26 PM

«include»

Figure 96 : Tick Object Component

A - 1.1.1.4.1.2.6.1.1 Tick Object Component

Type: public UseCase
Package: Tick Object Component

 205

Name: Design: T ick Object Component(Component Sequence)
Author: Jeff Plummer
Version: 1.0
Created: 11/3/2004 1:04:14 PM
Updated: 11/4/2004 4:41:32 PM

This diagram is speci fic to the simple
design used in this thesis.

Obj ect & Obj ect
Management System

(Data)

System (Ticked)

(from Game Analysis - Use Case and Dynamic View)
//T ick Object Component

//T ick Commander Objects

//T ick Unit Objects

Figur ence)

Design: Tick Object Component(Component Sequence) Messages

e 97 : Design: Tick Object Component(Component Sequ

I
D

Messag
e

From
Object

To
Object

Notes

1 //Tick
Object
Compo
nent

System
(Ticked
)

Object
&
Object
Manage
ment
System
(Data)

This is equivalent to
telling the game to
perform game logic.

2 //Tick
Comma
nder
Objects

Object
&
Object
Manage
ment
System
(Data)

Object
&
Object
Manage
ment
System
(Data)

Tell the commanders to
perform general game
logic for the units it
commands.

3 //Tick
Unit
Objects

Object
&
Object
Manage

Object
&
Object
Manage

Perform Game logic on
the individual units
themselves.

 206

ment
stem

(Data)

ment

(Data)
Sy System

 207

A - 1.1.1.4.1.2.

7 ysTick Ph ics Component

Name: T ick Ph
Author: Jeff Plum
Version: 1.0
Created: 12/23/2
Updated: 11/4/20

ysics Component
mer

003 9:01:20 PM
04 4:41:40 PM

T his diagram is specific to the simple
design used in this thesis.

(from Design: Tick)

ment Game
System

Tick
Tourna

 Unreal System (Ticked Tick Physics
Component

)

(from Game Analysis - Use Case and Dynamic View)

Detect Collisions Calculate Collision
Reaction«include»«include» «include»

Figure 98 : Tick Physics Component

.7 alcu

A - 1.1.1.4.1.2 .1.1 C late Collision Reaction
seType: public UseCa

omponent

e physical reaction that occurs (i.e.

Package: Tick Physics C

Upon a collision, calculate th bounce).

A - 1.1.1.4.1.2.7.1.2 Detect Collisions
seType: public UseCa

omponent

ut we are saying collsion
mmercial physics engines offer thi

hysics Component

Package: Tick Physics C

This is an arbitrary decision b detection functionality resides in
the physics engine. Many co s functionality, and I'm
just continuing that.

 - 1.1.1.4.1.2.7.1.3 Tick PA
Type: public UseCase
Package: Tick Physics Component

 208

System (Ticked)

(from Game Analysis - Use Case and Dynamic View)

Name: Design: T ick Physics Component (Component Sequence)
Author: Jef
Version: 1.
Created: 11/

f Plummer
0

3/2004 9:21:00 AM
Updated: 11/4/2004 4:41:52 PM

This diagram is specific to the simple
design used in this thesis.

Physics Component Obj ect & Obj ect
gement System

(Data)
Mana

//T ick Physics Component

//Request objects to operate on

//Perform Coll ision Detection

//Perform Col l ision Reaction

//Update Data

Figure 99 : Design: Tick Physics Component (Component Sequence)

n: Tick Ph ponent (Component Sequence) Messages

Desig ysics Com

I
D

Messag
e

From
Object

To
Object

Notes

1 //Tick S
Physics
Compo
nent

y
(T
)

y
Co

t

 design the physics
s in its own

component and will be
e

rate

stem Ph
icked

nen

sics In this
mpo reside

"ticked" to tell th
physics system to ope
on a list of objects.

2 //Reque
st
objects
to
operate
on

Physics
Compo
nent

Ob
&
Ob
Ma
me
System
(Da

ist(s) of objects

detection and reaction on.

ject

ject
nage
nt

Request l
that require physics
processing. Basically
request only the objects
to perform collision

ta)
3 //Perfor Physics

m Compo
Phy
Co

sics
mpo collide

Determine if objects

 209

Collisio
n
Detecti
on

nent nent

4 //Perfor
m
Collisio
n
Reactio
n

Physics
Compo
nent

Phy
Co
nen

sical
 due

the collision(s)

sics
mpo
t

Determine the phy
reaction that occurs
to

5 //Updat Physics Object Update object
e Dat Compo

nent
&
Object

a

ment

 data based
on the physical reaction.

Manage

System
(Data)

APPENDIX B –
PROTOTYPE DESIGN

 211

TABLE OF CONTENTS – APPENDIX B

E Page

nalysis View... 218

Logical Architecture ... 218

Object Interfaces ... 219

GameObject .. 219

AI2Object.. 220

IAIObject .. 220

IGraphics2DObject ... 220

IGraphics3DObject ... 221

Logical View ... 222

Programming Utilities Library ... 222

Systems... 223

AI System.. 224

AI Component - Implementation... 224

AI Exported Classes ... 225

Root ... 225

Private AI System Implementation .. 227

CAISystem... 227

CAIProcessorObject .. 228

CAIViewProcessor .. 229

AI Component - Interfaces .. 231

SECTION NAM

Prototype ... 218

A

Section Name Page

212

AI Interfaces Object System Can Use To Communicate With AI System.... 232

2

IAISystem.. 232

3

AI Interfaces The Object System Implements ... 234

IAICapableObject.. 234

.. 234

IAIProcessableObject .. 235

IAIView... 236

System 238

om - Im ... 238

x as .. 239

Root ... 239

ntation .. 241

1

5

AI2 Interfaces Object System Can Use To Communicate With AI2 System 246

essor 246

IAI2System.. 246

IAIProcessorObject ... 23

IAIViewProcessor ... 23

IAIObjectSystem

IAISceneManager.. 236

AI2

AI2 C

AI2 E

ponent

ported Cl

plementation............

ses ...

Private AI2 System Impleme

CAI2System .. 24

CAI2ProcessorObject .. 242

CAI2ViewProcessor .. 243

AI2 Component - Interfaces .. 24

IAI2Proc Object ...

Page

213

Section Name

IA Proc .. 247

AI2 Interfaces The 248

IAI2CapableObject.. 248

IAI2ObjectSys ... 248

IAI2ProcessableObject .. 249

IAI2SceneManager.. 250

.. 250

e Object System

52

252

.. 252

te bje .. 254

CD er .. 254

CDemoGameObjectSystem... 255

CDemoMainView.. 259

CDemoObject .. 259

CDemoObjectSceneManager .. 265

CDemoViewBaseClass.. 267

CTriangleGameObject... 273

Data Structures.. 275

demoPoint2i... 275

demoPoint3f .. 276

I2View essor ...

 Object System Implements

tem ..

IAI2View...

Gam ... 252

Game Object Component - Implementation.. 2

Game Object Component Exported Classes ..

Root

Priva Game O

emoCam

ct Component Implementation

a ..

Section Name Page

214

demoRect ... 276

Game Object Component - Interfaces ... 278

IObjectSystem ... 278

Component Attachings .. 279

Game System .. 281

CDemoApplication.. 281

Graphic 3D System... 284

Graphics3DComponent - Implementation... 284

Exported Classes .. 285

Root ... 285

Private Graphics3D System Implementation ... 287

CGraphics3DProcessorObject ... 287

.. 288

....................................... 291

........... 293

 can use to communicate with the Graphics3D

m 294

IGraphics3DProcessorObject .. 294

IGraphics3DSystem... 295

s3 .. 295

nte 297

IGraphics3DCamera .. 297

CGraphics3DSystem

CGraphics3DViewProcessor

Graphics3DComponent - Interfaces ...

Interfac Objees the ct System

Syste

IGraphic DViewProcessor

I rfaces The Object System Implements..............

Page

215

Section Name

IGraphics3DCapableObject... 297

IGraphics3DObjectSystem .. 298

cessableObject ... 298

IGraphics3DS ... 299

IG View.. 300

Graphics 2 ... 302

Graphics Component - Implementation .. 302

... 303

.. 303

Private Grap 305

........ 305

... 308

CG ie 310

cs n .. 312

Interfaces Object System Can Use To Communicate With Graphics System313

IGraphicsProc ... 313

st 313

rfa e Obj 315

I2DGraphicsC .. 315

.. 316

I2 ap 316

IGraphicsCamera ... 317

IGraphics3DPro

ceneManager............................

raphics3D

D System

Exported Classes

Root ...

hics System Implementation ..

CGraphicsProcessorObject..

CGraphicsSystem ...

raphicsV

 Compone

wProcessor..................................

t - InterfacesGraphi

essorObject

IGraphicsSy em

ect System Implements

..

Inte ces Th

amera

I2DGraphicsObject

DSpriteGr hicsObject

Name Page

216

Section

IGraphicsCapableObject.. 317

IGraphicsObjectIterator ... 317

.. 318

IGraphicsSceneManager.. 318

IGraphicsView... 319

... 320

P leG 321

lud .. 323

CStdStr 323

IIterator .. 334

.. 335

 Vi 337

37

e AI2 System... 337

In I S ... 340

n p 343

Initialize Graphics System... 346

Initialize Obje ... 350

.. 353

.. 356

Ti stem 356

i yste ... 362

IGraphicsObjectSystem.........................

IGraphicsViewIterator

I rocessab

es

raphicsObject.............................

Utility Inc

..

VectorBasedIteratorTemplateClass

Dynamic ew..

Initialize.. 3

Initializ

itialize A

itialize Gra

ystem..................................

hics 3D SystemI

ct System................

 SystemInitialize Game

...

....................................

Tick...........

ck AI Sy

ck AI2 S

...

mT

e Page

217

Section Nam

Tick Graphics 3D System.. 367

Tick Graphics System.. 373

Tick Prototype Game System.. 379

Component View... 380

AI System 2 ... 380

Artificial Intelligence... 380

Audio ... 380

Game System... 380

Graphics... 381

Graphics 3D System .. 381

Network ... 381

Object & Object Management System (Data)... 381

OGRE Graphics Engine... 381

Physics Component ... 382

User Interface .. 382

 218

B - 1.2 Prototype

B - 1.2.1 Analysis View

This view shows a quick analysis of what the prototype is.

B - 1.2.1.1 Logical Architecture

This diagram show was built. s the high level architecture of the prototype system that

Game Obj ect System

(from Systems)

AI System

(from Systems)

AI2System

(from Systems)

Graphic 3D System

(from Systems)

Graphics 2D System

(from Systems)

Name: Prototype Logical Archi tecture
Author: Jeff Plummer
Version: 1.0
Created: 10/18/2004 10:31:16 AM
Updated: 11/5/2004 2:36:35 PM

Figure 100 : Prototype Logical Architecture

 219

B - 1.2.1.1.1 ect Interfaces Obj

This diagram shows a short list of data that will reside in the prototype "game" object,
and who will use that data.

«interface»
IGraphics3DObject

+ gs3dGet3DObjectGraphicsResource() : String
+ gs3dGet3DObjectLocation() : point3f
+ gs3dGet3DObjectOrientation() : point4f

GameObj ect

- m_s3DObjectResource: String
- m_s2DObjectResource: String
- m_3fObjectPosi tion: point3f
- m_4fObjectOrientation: point4f

«interface»
IGraphics2DObject

+ gs2dGet2DObjectGraphicsResource() : String
+ gs2dGetOffsetInResource() : point2d
+ gs2dGet2DObjectLocation() : point2d

«interface»
IAIObject

+ aisGetObjectLocation() : point3f

«interface»

Name: Required Object Interfaces
Author: Jeff Plummer
Version: 1.0
Created: 10/18/2004 4:41:45 PM
Updated: 11/5/2004 2:58:07 PM

«real ize»«real ize»

«real ize»«real ize»

AI2Object

+ ai2sGetObjectOrientation() : point4f

Figure 101 : Required Object Interfaces

B - 1.2.1.1.1.1.1.1.1 GameObject
Type: public Class

 Implements: AI2Object, IAIObject, IGraphics2DObject,
ct.

O terfaces

cla h t in the prototype.

GameObject Attributes

IGraphics3DObje
Package: bject In

This example

ss shows w at data will exist in a game objec

Attribute Type Notes

_s3DObject
private : at 3D

m
Resource

String
A string that says wh
graphical resource should be
used to represent this object in
3D.

 private : A string that says what 2D

 220

m_s2DObject
Resource

String

graphical resource should be
used to represent this object in
2D.

_3fObjectPo
tion

private :
point3f

's position in 3-Space.
m
si

The object

m_4fObjectOr

private :
f

The object's orientation
nted as a quaternion.

ientation
point4 represe

 - 1.2.1.1.1.1.1 AI2Object B .1.2
public abstract «interface» InterfaceType:

age: Object terfaces

ple interface shows engine will require from an AI2
object.

AI2Object Interfaces

Pack

This sam

In

what type of data the AI2

Method Type Notes

ai2sGetObject
Orientation ()

public
abstract:
point4f

Get the object's orientation
represented as a quaternion.

B - 1.2.1.1.1.1.1.1.3 IAIObject

Type: public abstract «interface» Interface
Package: Object Interfaces

This sample interface shows what type of data the AI engine will require from an AI
object.

IAIObject Interfaces
Method Type Notes

aisGetObjectL
ocation ()

public
abstract:
point3f

Get the object's position in 3-
Space.

B - 1.2.1.1.1.1.1.1.4 IGraphics2DObject
Type: public abstract «interface» Interface

 221

Package: Object Interfaces

his sample interface shows what type of data the 2D Graphics engine will require from
a 2D graphical object.

IGraphics2DObject In s

T

terface
Method Type N es ot

gs2dGet2DObj
ectGraphicsRe
source ()

public
abstract:
String

A string that says what 2D
graphical resource should be
used to represent this object in
2D.

gs2dGetOffset

public
abstract:

Get the offset in the 2d image
resource that respresents the

he game
object will actually use the

InResource () point2d sprite. Game logic in t

quaternion orientation and create
the sprite image offset.

g

public
s2dGet2DObj
ctLocation ()

abstract:
point2d

Get the position of the object in
2 space

e

.1 raphics3DObject B - 1.2.1.1.1.1 .1.5 IG
 public abstract «interface» InterfaceType:

ackage: Object Interfaces

ows what type of data the 3D Graphics engine will require from
hical object.

phics3DObject Interfaces

P

This sample interface sh
a 3D grap

IGra
Method Type Notes

g
ectGraphicsRe
source ()

s3dGet3DObj

abstract:
String

Get A string that says what 3D
graphical resource should be
used to represent this object in
3D.

public

gs3dGet3DObj
ectLocation ()

public
abstract:
point3f

Get the object's position in 3-
Space.

gs3dGet3DObj
ectOrientation
()

public
abstract:
point4f

Get the object's orientation
represented as a quaternion.

 222

B - 1.2.2 Logical View

his view shows ses a is prototype.

B - 1.2.2.1 Programmin

This package contains many in this project.

T

 the clas nd structures involved in th

g Utilities Library

of the utility classes that were used

Name: Programming Uti l i ties Library
Author: Jeff Plummer
Version: 1.0
Created: 6/18/2004 4:42:34 PM

2004 3:31:20 PMUpdated: 11/5/

Logging

+ AutomaticGuardUnguard
+ Exception
+ ExceptionCodes
+ Log
+ LoggingLevel
+ LogManager
+ LogMessageLevel

Resource Management

+ <anonymous>
+ <anonymous>
+ BaseResource
+ CArchiveCapableResource
+ CArchiveCapableResourceManager
+ CFileSystemExplorer
+ CMemoryManagedObject
+ CZipFi leExplorer
+ Priori tyType
+ ptr_greater
+ ptr_less
+ ResManager

String

+ CStdStr
+ NotSpace
+ NotSpace
+ SSSHDR
+ SSToLower
+ SSToLower
+ SSToUpper
+ SSToUpper
+ StdStringEqualsNoCaseA
+ StdStringEqualsNoCaseW
+ StdStringLessNoCaseA
+ StdStringLessNoCaseW

Singleton

+ String

+ Single

gure 102 : Programming Utilities Library

ton

Fi

 223

B - 1.2.2.2 Systems

This package contains all the systems involved in the prototype.

Graphics 2D System

+ Graphics Component - Implementation
+ Graphics Component - Interfaces

Netw orking System

+ Network Component - Implementation
+ Network Component - Interfaces

(from Not Implemented)

UI System

+ UI Component - Implementation
+ UI Component - Interfaces

(from Not Implemented)

Name: Systems
Author: Jeff Plummer
Version: 1.0
Created: 6/18/2004 4:56:26 PM
Updated: 11/8/2004 3:44:14 PM

The simple design is NOT

Game Obj ect System

+ Game Object Component - Implementation
+ Game Object Component - Interfaces
+ Component Attachings

AI System

+ AI Component - Implementation
+ AI Component - Interfaces

Audio System

 presented as T HE DESIGN TO USE for
this architecture. It is merely a simple implementation of this
architecture.

Figure 103 : Systems

+ Audio Component - Implementation
+ Audio Component - Interf

(from Not Implemented

aces

)

 224

B - 1.2.2.1.2 AI System

This represents one artifical intelligence logical module. It's functionality will be very
simple, possibly adjust the object position in 3-space.

B - 1.2.2.1.1 AI Component - Implementation

This package contains an example implementation of the AI system. The implementation
is not meant to show how to implement an AI engine, but rather show how an AI
component could be built using the simple design presented in this thesis.

The simple design is NOT presented as THE DESIGN TO USE for
this archi tecture. It is merely a simple implementation of this
archi tecture.

Name: AI Component - Example Implementation
Author: Jeff Plummer
Version: 1.0
Created: 1/15/2004 8:51:45 PM
Updated: 11/8/2004 4:06:44 PM

Priv ate AI System Implementation

+ CAISystem
+ CAIProcessorObject
+ CAIViewProcessor

AI Exported Classes

+ Root

Figure 104 : AI Component - Example Implementation

 225

B - 1.2.2.2.1.1.1 AI Exported Classes

The simple design is NOT presented as THE DESIGN TO USE for
this archi tecture. It is merely a simple implementation of this
archi tecture.

Singleton
Root

- m_pAISystemImplementation: *CAISystem
- m_pAISystemInterface: *IAISystem

+ Root()
+ ~Root()

Name: Exported Classes
Author: Jeff Plummer
Version: 1.0
Created: 10/28/2004 3:39:15 PM
Updated: 10/28/2004 3:44:19 PM

Figure 105 : Exported Classes

+ createAISystem(IAIObjectSystem*) : IAISystem*

B - 1.2.2.2.1.1.1.1.1 Root
ype: public T Class

 Extends: Singleton.
Package: AI rted C

e o rted class in the Artifical Intelligence component. It represents
. From here the game system will connect to the AI

rface to the AI system. Root is not part of the formal
 it is lementation connection point. In the real world it may be

ecessary to communicate in more ways with the logical component (due to specific
library initializations, etc.). These "extra" communications can be done through the root
object directly to the insta ystem, rather than through the architectural

 Expo lasses

This class is th
the initial link to
system, and requ

nly expo
the AI system
est an inte
 an imparchitecture,

n

nce of the AI s
specified interface.

Root Attributes
Attribute Type Notes

m_pAISystem
Implementatio
n

private :
CAISyste
m

A pointer to the implementation
of the AI system. This should
never be accessed publicly. It
exists to handle those special
"real world" occasions where the
architectural interface doesn't

plementation specific
.

handle im
features

 226

m_pAISystem
Interface

private :
IAISyst
m

e

component. The creator of root
will receive a pointer to this
interface after calling
"CreateAISystem".

This is a pointer to the
architectural interface to the AI

Root Methods
Method Type Notes
 Root () public: tance

of the AI system.
Constructor - Create an ins

 ~Root () public
abstract:

Destructor - Destroy the instance
of the AI System.

yste

(IAIObjectSyst

public: tem [
ut]

implements the

data section of the game system.

Connect the object system to the
AI system and return an
interface to AI system
@param pObjectSystem A
pointer to an object that
implements the
IAIObjectSystem interface. The
AI component will use this
interface to communicate to the
data section of the game system.

createAIS IAISyste IAIObjectSystem* - ino
m m* A pointer to an object that

em*) IAIObjectSystem interface. The
AI component will use this
interface to communicate to the

param: pObjectSys

 227

B - 1.2.2.2.1.1.2 Private AI System Implementation

CAIProcessorObj ect

- m_pProcessableObject: *IAIProcessableObject
- m_bMovingLeft: bool
- m_bMovingUp: bool
- m_bMovingBack: bool

+ CAIProcessorObject(IAIProcessableObject*)
+ ~CAIProcessorObject()
+ releaseAIProcessorObject() : void
+ processAIObject() : void

CAISystem

- m_pObjectSystem: *IAIObjectSystem

+ CAISystem()
+ ~CAISystem()
+ connectObjectSystem(IAIObjectSystem*) : void
+ tickAISystem(float) : void

CAIView Processor

- m_pAIView: *IAIView

+ CAIViewProcessor(IAIView*)
+ ~CAIViewProcessor()
+ processView() : void
+ releaseAIViewProcessor() : void

Name: Private AI System Implementation
Author: Jeff Plummer
Version: 1.0
Created: 10/28/2004 3:39:28 PM
Updated: 11/3/2004 4:37:41 PM

The simple design is NOT presented as THE DESIGN TO USE for
this ar

chi te
chitecture. It is merely a simple implementation of this

ar cture.

Figure 106 : Private AI System Implementation

B - 1.2.2.2.1.1.2.1.1 CAISystem

Type: public Class
 Implements: IAISystem.
Package: Private AI System Implementation

ISystem

i

This class represents the implementation of the AI system. It implements the IA

terface, and will be responsible for performing AI operations on the objects it receives in
from the Object component.

CAISystem Attr butes
Attribute Type Notes

m_pObjectSys
tem

IAIObjec
tSystem

Pointer to the object system that
this AI component is attached to.

private :

CAISystem Methods
Method Type Notes
 CAISystem () public: Constructor
 ~CAISystem public Destructor

 228

() abstract:

connectObject

ystem

public
abstract:
void

param: objectSystem [
IAIObjectSystem* - inout]
 A pointer to an object that

plements the
IAIObjectSystem interface. The

nicate to the
data section of the game system.

IAISystem interface
implementation

S
(IAIObjectSyst im
em*)

AI component will use this
interface to commu

 tickAISystem
(float)

public
abstract:
void

param: tDiff [float - in]

 the AI
rate one cycle

processing on AI capable
objects.

IAISystem interface
implementation Causes
component to ite
of time and performs AI

.2.1.1.2 CAIProcessorObject

B - 1.2.2 .1.2
ype: pu ssT blic Cla

m ts: I
ys n

This is the AI Ob ver that attaches to a game object. It uses the AI interface into
the game object to get access to the necessary data. The AI Processor object will do that

I calculations treating the g as a data access point.

bject Attribu s

 I
Package: Pr

plemen
ivate AI S

ject obser

AIProcessorObject.
tem Implementatio

A

CAIProcessorO

ame object simply

te
Attribute Type Notes

m_pProcessabl
Object

private :
IAIProce

b
 attached to.

e ssableO
ject

The AI Processable game object
this observer is

m_bMovingLe

AI variable used by the AI logic
to determine the objects new

ft

private :
bool

position.

m_bMoving
p

U
: I variable used by the AI logic

 new
position.

private
bool

A
to determine the objects

 229

m_bMovingBa
ck

private :
bool

AI variable used by the AI logic
to determine the objects new
position.

CAIProcessorObject Methods
Method Type Notes
 public: param: pObject [
CAIProcessor

ssabl
Object*)

IAIProcessableObject* - inout]

Constructor
Object
(IAIProce
e

~CAIProcesso
rObject ()

public
abstract:

Destructor

releaseAIProc
essorObject ()

ract:
void

The game object should call this
function to delete the processor
when the game object is deleted.

public
abst

processAIObje
ct ()

public:
void

Perform AI Processing on the
game object it is attached to. In
this case just move the object
around the screen.

B - 1.2.2.2.1.1.2.1.3 CAIViewProcessor
Type: public Class
 Implements: IAIViewProcessor.

 Pr I Sys plementation

es to a view the view interface to
nd works wi ed to the objects).

CAIViewProcessor Attributes

Package: ivate A tem Im

This class attach
request objects a

and processes the view (i.e. uses
th the object processors attach

Attribute Type Notes
 m_pAIView

Pointer to the view being
observed.

private :
IAIView

CAIViewProcessor Methods
Method Type Notes

public:
CAIViewProc
essor

 param: pView [IAIView* -
inout]

 230

(IAIView*) Constructor

~CAIViewPro
cessor ()

act:
Destructor public

abstr

 processView
()

public:
void

Perform AI Processing of this
view. Request list of AI capable
objects, and call their observer
processors.

releaseAIView
Processor ()

public
abstract:
void

Call during view destructor to
release this observer.

 231

B - 1.2.2.1.2 AI Component - Interfaces

This package contains an interfaces for the AI system. The interfaces presented here are
for a specific design built on top of the proposed architecture.

The simple design is NOT presented as THE DESIGN TO USE for
this architecture. It is merely a simple implementation of this
archi tecture.

AI Interfaces Obj ect System Can Use To Communicate With AI System

+ IAIProcessorObject
+ IAISystem
+ IAIViewProcessor

AI Interfaces The Obj ect System Implements

+ IAICapableObject
+ IAIObjectSystem
+ IAIProcessableObject
+ IAISceneManager
+ IAIView

AI Shared Data Types

- <anonymous>
- <anonymous>
- <anonymous>
+ iRect
+ point2d
+ point3f
+ point4f

Name: AI Component - Publ ic Interfaces
Author: Jeff Plummer
Version: 1.0
Created: 1/15/2004 8:43:52 PM
Updated: 10/28/2004 3:40:18 PM

Figure 107 : AI Component - Public Interfaces

 232

B - 1.2.2.2.1.2.1 Interfaces Object System Can Use To Communicate With AI
ystem

ows the interfaces that are made available to the game system to use in
ommun ith th stem.

AI
S

This diagram sh
order to c icate w e AI Sy

Name: Interfa
Author: Jeff Plummer
Version: 1.0

04 3:17

ces Object System Can Use T o Communicate With AI System

M
4 3:11:

Created: 10/28/20
Updated: 11/5/200

:13 P
39 PM

«interface»
IAIProcessorObject

+ «pure» releaseAIProcessorObject() : void

«interface»
IAISystem

+ «pure» connectObjectSystem(IAIObjectSystem*) : void
+ «pure» tickAISystem(float) : void

T he simple design is NOT presented as T HE DESIGN TO USE for
this archi tecture. It is merely a simple implementation of this
archi tecture.

«interface»
IAIViewProcessor

+ «pure» releaseAIViewProcessor() : void

Figure 108 : Interfaces Object System Can Use To Communicate With AI System

B - 1.2.2.2.1.2.1.1.1 IAIProcessorObject
Type: public abstract «interface» Interface
Package: AI Interfaces Object System Can Use To Communicate With AI System

This is the interface the game system can use to access the domain-specific processor that
is attached to a game object. This example is empty, showing that game objects don't
necessarily require domain-specific functionality access.

IAIProcessorObject Interfaces
Method Type Notes

releaseAIProc
essorObject ()

«pure»
public
abstract:
void

Only required in C++ because
there is no memory
management. Call this during
the game object destructor.

B - 1.2.2.2.1.2.1.1.2 IAISystem
Type: public abstract «interface» Interface
Package: AI Interfaces Object System Can Use To Communicate With AI System

 233

he ar AI component.

ne of the major goals of this architecture is to limit interaction from outside into the AI
component. So this interface will provide on e functionality to setup the AI system
and provide the AI system with the means to communicate back to the data. From that
point on most communication will originate from the AI system back to the data.

IAISystem Interfaces

This interface is t chitectural connection from the game system to the
O

ly th

Method Type Notes

connectObject
System
(IAIObjectSyst
em*)

«pure»
public
abstract:
void

param: objectSystem [
IAIObj

Use this method to connect an
AI Capable Object Management
System to the AI Component.

ectSystem* - inout]

 tickAISystem
(float)

«pure»
public

ct:
void

param: tDiff [float - in]

system, so that it will request
and process AI objects.

abstra Use this method to Tick the AI

B - 1.2.2.2.1.2.1.1.3 IAIViewProcessor
Type: public abstract «interface» Interface

ckage: AI Interfaces Object System Can Use To Communicate WPa ith AI System

his is the interface the game system can use to access the domain-specific view
a view. This example is empty, showing that game views

cific functionality access.

s ces

T
processor that is attached to

sarily domdon't neces require ain-spe

IAIViewProces or Interfa
Method Type Notes

releaseAIView
Processor ()

«pure»
public
abstract:
void

O
there is no m

nly required in C++ because
emory

management. Call this during
the game object destructor.

 234

B - 1.2.2.2.1.2.2

 rfaces The Object System Implements AI Inte

«interface»
IAICapableObject

+ doNothing() : void

«interface»
IAIObjectSystem

+ «pure» aisGetAIViews() : IAIView Iterator*

«interface»
rocessableObjectIAIP

+ «pure» aisGetAI
+ «pure» aisAssig
+ «pure» aisGetOb
+ «pure» aisSet

ProcessorObject() : IAIProcessorObject*
nAIProcessorObject(IAIProcessorObject*) : void
jectPosi tion() : point3f

ObjectPosi tion(point3f&) : void

«interface»
IAISceneManager

+ «pure» aisGetAIProcessableObjects() : IAIObjectIterator*

«interface»
IAIView

+ «pure» aisGet
Ass

AIViewProcessor() : IAIViewProcessor*
ignAIVie void

etSceneM

ces The Ob s
lummer

Version: 1.0
Created: 10/28/2004 3:16:
Updated: 11/3/2004 4:21:1

Name: Interfa
Author: Jeff P

ject System Implement

15 PM
4 PM

+ «pure» ais
+ «pure» aisG

wProcessor(IAIViewProcessor*) :
anager() : IAISceneManager*

The simple design is NOT presented as THE DESIGN TO USE for
this archi tecture. It is merely a simple implementation of this
archi tecture.

0 t System Implements

 - 1.2.2.2.1.2.2 IAI

Figure 1 9 : Interfaces The Objec

B .1.1 CapableObject
Type: public abstract «interface» Interface

AI Interfaces The Object System Implements

This class is required for C++ and dynamic type casting. It has no other uses.

je ce

Package:

IAICapableOb ct Interfa s
Method Type Notes
 doNothing () public

abstract:
void

B - 1.2.2.2.1.2.2.1.2 IAIObjectSystem
ract «interface» Type: public abst Interface

Package: AI Interfaces The Object System Implements

 235

This interface is the architectural connection from the object system r
managing objects capable o

esponsible for
f AI to the AI component. Using this interface the AI

riate AI operations on
em.

component will request AI capable objects and perform the approp
th

IAIObjectSystem Interfaces
Method Type Notes

aisGetAIView
s ()

«pure»
public
abstract:
IAIViewIt
erator*

et an iterator (list) of active
views to process.
G

B - 1.2.2.2.1.2.2.1.3 IAIProcessableObject
public abstract «interface» InterfaceType:

 Ex ICapableObject.
Package: AI Interfaces The Object System Implements

Game objects that wish to be processable by this AI engine must implement this

terface. It allow sy m to read/write certain data elements.

rocessableO terfaces

 tends: IA

in

IAIP

s the AI

bject In

ste

Method Type Notes

aisGetAIProce
ssorObject ()

Allows the AI engine to get the
AI observer object attached to
this game object.

«pure»
public
abstract:
IAIProce
ssorObje
ct*

aisAssignAIPr
ocessorObject

essor
act:

param: procObj [
IAIProcessorObject* - inout]

llows the AI engine to set the
AI observer to be attached to this
game object.

«pure»
public
abstr

(IAIProc
Object*)

void A

aisGetObjectP
osition ()

Position data read «pure»
public
abstract:
point3f

aisSetObjectP

«pure»
public

param: pos [point3f& - inout]

 236

osition
)

tract: Position data write abs
(point3f& void

B - 1.2.2.2.1.2.2.1.4 IAISceneManager
Type: public abstract «interface» Interface
Package: AI Interfaces The Object System Implements

he scene manag s the object list for the component to process.

Manag ces

T

IAIScene

er provide

er Interfa
Method Type Notes

aisGetAIProce
ssableObjects
()

rator*

Ask the view's scene manager
for a list of objects to process.

«pure»
public
abstract:
IAIObjec
tIte

B - 1.2.2.2.1.2.2 IAI.1.5 View
Type: pu ct «interface» Interface blic abstra
Package:

The

AI Interfaces The Object System Implements

game object system implements this interface to provide "views" into the data. A
iew is just some info ation and acess to a list of objects to process.

aces

v

IAIView Interf

 context rm

Method Type Notes

aisGetAIView
Processor () abstract:

P

et access to the attached
domain-specific view observer
that will process this view.

«pure»
public

G

IAIView
rocessor
*

aisAssignAIVi
ewProcessor
(IAIViewProce
ssor*)

out]

Set the attached domain-specific
view observer that will process
this view.

«pure»
public
abstract:
void

param: viewProc [
IAIViewProcessor* - in

isGetSceneM

«pure» Request access to the object list
a public in this view.

 237

anager () abstract:
IAIScene
Manager
*

 238

B - 1.2.2.2.2 AI2System

sents ntelligence logical module. It's functionality will be very
-space.

 - 1.2.2.2.1 AI2 Component - Implementation

This repre one artifical i
simple, possibly adjust the object's orientation in 3

B

AI2 Exported Classes

+ Root
Priv ate AI2 System Implementation

+ CAI2System
+ CAI2ProcessorObject
+ CAI2ViewProcessor

 : AI2 Component - Example Implementation Figure 110

 239

B - 1.2.2.2.2.1.

1 Exported Classes

AI2

The simple design is NOT presented as THE DESIGN TO USE for
this archi tecture. It is merely a simple implementation of this
archi tecture.

Singleton
Root

- m_pAI2SystemInte
- m_pAI2SystemImpl

rfa AI2System
em ion: *CAI2System

ce: *I
entat

+ Root()
+ ~Root()
+ createAI2System(IAI2ObjectSystem*) : IAI2System*

ed C s
er

:47:35 PM
:31:53 PM

gure 111 : AI2 Exported Classes

 - 1.2.2.2.2.1.1

Name: AI2 Export
Author: Jeff Plumm
Version: 1.0
Created: 11/3/2004 8
Updated: 11/5/2004 3

lasse

Fi

B .1.1 Root
uType: p blic Class

tends: Singl E
Package:

x eton.
AI2 Exported Classes

e o e lass in the Artifical Intelligence component. It represents
o . From here the game system will connect to the AI

rface to the AI system. Root is not part of the formal
 it is entation connection point. In the real world it may be

m n ore ways with the logical component (due to specific
at etc.). These "extra" communications can be done through the root

t directly to , rather than through the architectural
ac

This class is th
the initial link t
system, and requ

nly export
the AI system
est an inte
 an im

d c

architecture,
necessary to co
library initializ
objec

plem
municate i
ions,
 the i

 m

nstance of the AI system
e. specified interf

Root Attributes
Attribute Type Notes

m_pAI2Syste
mInterface

This is a pointer to the
architectural interface to the AI
component. The creator of root
will receive a pointer to this
interface after calling

".

private :
IAI2Syste
m

"CreateAISystem

m_pAI2Syste
mImplementat
ion

 pointer to the implementation
of the AI system. This should
never be accessed publicly. It
exists to handle those s

private :
CAI2Syst
em

A

pecial

 240

"real world" occasions where the
chitectural interface doesn't

handle implementation specific
features.

ar

oot Methods R
Method Type Notes

public: Root () Constructor - Create an instance
of the AI system.

 ~Root ()
stract:

Destructor - Destroy the instance
of the AI System.

public
ab

createAI2Syst

ctSy

public:
IAI2Syste

param: pObjectSystem [
IAI2ObjectSystem* - inout]

t the object system to the

interface to AI system
param pObjectSystem A

pointer to an object that
implements the

. The
I component will use this

interface to communicate to the
data section of the game system.

em m*
(IAI2Obje Connec
stem*) AI system and return an

@

IAIObjectSystem interface
A

 241

B - 1.2.2.2.2.1.2 te AI2 System Implementation

Priva

IAI2ViewProcessor
CAI2View Processor

- m_pAI2View: *IAI2View

+ CAI2ViewProces
+ ~CAI2ViewProce
+ processView() : v
+ releaseAI

sor(I
ssor
oid

2ViewProce

AI2View*)
()

ssor() : void

IAI2ProcessorObject
rocessorObj ectCAI2P

- m_pProcessableObject: *IAI2ProcessableObject

+ CAI2ProcessorObject(IAI2ProcessableObject*)
+ ~CAI2ProcessorObject()
+ releaseAI2ProcessorObject() : void
+ processAI2Object() : void

IAI2System
CAI2System

- m_pObjectSystem: *IAI2ObjectSystem

+ CAI2System()
+ ~CAI2System()

 System Implementation
mer

51:
04:

Name: Private AI2
Author: Jeff Plum
Version: 1.0

+ connectObjectSystem(IAI2ObjectSystem*) : void
+ tickAI2System(float) : void

Created: 11/3/2004 8:
Updated: 11/3/2004 9:

13 PM
19 PM

The simple design is NOT presented as THE DESIGN TO USE for
s merely a simple implementation of this

igure : Private AI2 System Implementation

.2

this archi tecture. It i
archi tecture.

F 112

B - 1.2.2.2.2.1 .1.1 CAI2System
uType: p blic Class

Ex : IAI2System.
ackage: Private AI2 System Implementation

lass repres plementation of the AI system. It implements the IAISystem
interface, and wi sible for performing AI operations on the objects it receives
from the Object c

ttr

 tends
P

This c ents the im

ll be respon
omponent.

CAI2System A ibutes
Attribute Type Notes

m_pObjectSys

m
je

Pointer to the object system that
this AI component is attached to.

te

private :
IAI2Ob
ctSystem

CAI2System Methods
Method Type Notes
 CAI2System : Constrcutor public

 242

()
 ~CAI2System
()

public
abstract:

Destructor

connectObject
System

ctSy

param: objectSystem [
IAI2ObjectSystem* - inout]

ISystem interface
implementation Connect the AI
system to the object component

at contains of the AI objects to
be processed.
@param objectSystem A

 interface. The
AI component will use this
interface to communicate to the
data section of the game system.

(IAI2Obje
stem*)

public
abstract:
void

IA

th

pointer to an object that
implements the
IAIObjectSystem

tickAI2System
(float)

param: tDiff [float - in]

IAISystem interface

auses the AI

 the next design iteration of the
thesis.

public
abstract:
void

implementation C
component to iterate one cycle
of time... This will be expanded
in

B - 1.2.2.2.2.1.2 CAI2ProcessorObject .1.2
puType: blic Class
Ex 2ProcessorObject.
Private AI2 System Implementation

his is the AI Ob t attaches to a game object. It uses the AI interface into
t t ss to the necessary data. The AI Processor object will do that
tr game object simply as a data access point.

CAI2ProcessorO butes

Package:

tends: IAI

T
the game objec
AI calculations

ject observer tha
o get acce
eating the

bject Attri
Attribute Type Notes

_pProcessabl c
The AI Processable game object

is observer is attached to. m
eObject

private :
IAI2Pro
essableO
bject

th

 243

CAI2ProcessorObject Methods
Method Type Notes

CAI2Processo
rObject
(IAI2Processa
bleObject*)

param: pObject [
IAI2ProcessableObject* - inout]

Construction/Destruction

public:

~CAI2Process
orObject ()

public
abstract:

Destructor

releaseAI2Pro
cessorObject ()

The game object should call this
function to delete the processor
when the game object is deleted.

public
abstract:
void

processAI2Obj
ect ()

public:
void

Perform AI Proces
game object it is attached to. In
this case just ro

sing on the

tate the object.

B - 1.2.2.2.2.1.2 CAI2ViewProcessor .1.3
puType: blic Class
Ex 2ViewProcessor.

Package: Private AI2 System Implementation

his class attache iew the view (i.e. uses the view interface to
 a i o the objects).

essor Attribu s

 tends: IAI

T
request objects

CAI2ViewProc

s to a v
nd works w

and processes
th the object processors attached t

te
Attribute Type Notes
 m_pAI2View :

 private

IAI2View
Pointer to the view being
observed.

CAI2ViewProcessor Methods
Method Type Notes

CAI2ViewPro
cessor
(IAI2View*)

public:

truction

param: pView [IAI2View* -
inout]

Construction/Des

~CAI2ViewPr
ocessor ()

public
abstract:

estructor D

 processView public: Perform AI Processing of this

 244

() void view. Request list of AI capable
objects, and call their observer
processors.

leaseAI2Vie

:

Call during view destructor to
observer. re

wProcessor ()

public
abstract
void

release this

 245

B - 1.2.2.2.2 ponent - Interfaces

AI2 Com

The simple design is NOT presented as THE DESIGN TO USE for
this archi tecture. It is merely a simple implementation of this
archi tecture.

AI2 Interfaces Obj ect System Can Use To Communicate With AI2 System

+ IAI2ProcessorObject
+ IAI2System
+ IAI2ViewProcessor

AI2 Interfaces The Obj ect System Implements

+ IAI2CapableObject
+ IAI2ObjectSystem
+ IAI2ProcessableObject
+ IAI2SceneManager
+ IAI2View

AI2 Shared Data Types

+ iRect
+ point2d
+ point3f
+ point4f
+ simpleQuaterni

F

on

nent - Interfaces
er

9:04: M
 3:32: M

igure 113 : AI2 Component - Interfaces

Name: AI2 Compo
Author: Jeff Plumm
Version: 1.0

4 Created: 11/3/200
Updated: 11/5/2004

51 P
21 P

 246

B - 1.2.2.2.2.2
System

.1 AI2 Interfaces Object System Can Use To Communicate With AI2

ho erfaces that are made available to the game system to use in
n the AI2 System.

er

:06:22 PM
:11:55 PM

This diagram s
order to commu

ws the int
icate with

Name: AI2 Interfa
Author: Jeff Plumm
Version: 1.0
Created: 11/3/2004 9
Updated: 11/5/2004 3

ces Object System Can Use T o Communicate With AI2 System

The simple design is NOT presented as THE DESIGN TO USE for
this archi tecture. It is merely a simple implementation of this
archi tecture.

«interface»
IAI2ProcessorObject

+ «pure» releaseAI2ProcessorObject() : void

«interface»
IAI2System

+ «pur
+ «pur

e» connectObjectSystem(IAI2ObjectSystem*) : void
e» tickAI2System(float) : void

«interface»
IAI2ViewProcessor

+ «pure» releaseAI2ViewProcessor() : void

Figure 114 : AI2 Interfaces Object System Can Use To Communicate With AI2

System

.1 I2ProcessorObject

B - 1.2.2.2.2.2 .1.1 IA
 public abstract «interface» InterfaceType:

Package: AI2 Interfaces Object System Can Use To Communicate With AI2 System

his is the interface the game system can use to access the domain-specific processor that
is attached to a game object. This example is empty, showing that game objects don't
necessarily require domain-specific functionality access.

essor ces

T

IAI2Proc Object Interfa
Method Type Notes
 «pure»
releaseAI2 public there is no memory management Pro

ssorObject () abstract:
void

Only required in C++ because

ce

B - 1.2.2.2.2.2.1.1.2 IAI2System

 247

Type: public abstract «interface» Interface
AI2 Interfaces Object System Can Use To Communicate With AI2 System

interface is ctural connection from the game system to the AI component.
One of the major goals of this architecture is to limit interaction from outside into the AI
omponent. So t ce ill provide only the functionality to setup the AI system

e A ith the means to communicate back to the data. From that
n most co tion will originate from the AI system back to the data.

stem Inte

Package:

This the archite

c
and provide th
point o

his interfa
I system w

mmunica

 w

IAI2Sy rfaces
Method Type Notes

connectObject
System

ctSy
tract:

param: objectSystem [
IAI2ObjectSystem* - inout]

se this method to connect an
AI Capable Object Management
System to the AI Component.

«pure»
public
abs

(IAI2Obje
stem*)

void U

tickAI2System
(float)

param: tDiff [float - in]

Use this method to Tick the AI2
system, so that it will request

d process AI2 objects.

«pure»
public
abstract:
void

an

B - 1.2.2.2.2.2.1 IAI2ViewProcessor .1.3
ype: public abstract «interface» InterfaceT

stem Can Use To Communicate With AI2 System

This is the interface the game system can use to access the domain-specific view
processor that is attached to a view. This example is empty, showing that game views

on't necessarily require domain-specific functionality access.

Package: AI2 Interfaces Object Sy

d

IAI2ViewProcessor Interfaces
Method Type Notes

releaseAI2Vie
wProcessor ()

public
abstract:

use
there is no memory
management. Call this during

e game object destructor.

«pure»

void

Only required in C++ beca

th

 248

B - 1.2.2.2.2.2.2 AI2 Interfaces The Object System Implements

ho inter ment in order to be usable
System.

:24:58
 3:20:39

This diagram s
by the AI2

ws the faces the object system will imple

Name: AI2 Interfaces T he Object System Implements
Author: Jeff Plummer
Version: 1.0
Created: 11/4/2004 10
Updated: 11/5/2004

 AM
PM

T he simple design is NOT presented as THE DESIGN T O USE for
this architecture. It is merely a simple implementation of this
archi tecture.

«interface»
IAI2View

+ «pure» ai2sGetAI2ViewProcessor() : IAI2ViewProcessor*
+ «pure» ai2sAssignAI2ViewProcessor(IAI2ViewProcessor*) : void
+ «pure» ai2sGetSceneManager() : IAI2SceneManager*

«i
IAI2C

nterface»
apableObject

+ doNothing() : void

«inter
IAI2Objec

face»
tSystem

+ «pure» ai2sGetAI2Views() : IAI2ViewIterator*

«i ace»
IAI2Pro bleObject

nterf
cessa

+ «pure» ai2sGetAI2Proc
+ «pure» ai2sAssignAI2P
+ «pure» ai2sGetObjectO
+ «pure» ai2sSetObjectO

ess ct() : IAI2ProcessorObject*
roce Object(IAI2ProcessorObject*) : void
rientation() : point4f&
rientation(point4f&) : void

orObje
ssor

«interface»
IAI2SceneManager

+ «pure» ai2sGetAI2ProcessableObjects() : IAI2ObjectIterator*

 : AI2 Interfaces The Object System Implements

 - 1.2.2.2.2.2.2 IAI

Figure 115

B .1.1 2CapableObject
t «interface» Type: pu stracblic ab Interface

Pac

This cl

kage: AI2 Interfaces The Object System Implements

ass is required for C++ and dynamic type casting. It has no other uses.

j ces

IAI2CapableOb ect Interfa
Method Type Notes
 doNothing () public

abstract:
void

.2.1.2 IAI2ObjectSystem B - 1.2.2.2.2.2
 public abstract «interface» InterfaceType:

Package: AI2 Interfaces The Object System Implements

This interface is ctural connection from the object system responsible for
managing objects AI to the AI component. Using this interface the AI

the archite
 capable of

 249

c
them.

IAI2ObjectSyst

omponent will r I ca erform the appropriate AI operations on

em Interfaces

equest A pable objects and p

Method Type Notes

ai2sGetAI2Vie

s ()

«pure»
public

:

Get an iterator (list) of active
views to process.

w abstract
IAI2View
Iterator*

B - 1.2.2.2.2.2.2 I2ProcessableObject .1.3 IA
Type: public abstract «interface» Interface
 Extends: 2CapableObject.
Package: AI2 Interfaces The Object System Implements

a o be AI engine must implement this
low sy ents.

eObject Inter ces

IAI

Game objects th
interface. It al

IAI2Processabl

t wish t
s the AI

 processable by this
stem to read/write certain data elem

fa
Method Type Notes

i2sGetAI2Pro

«pure»

oc
essorObj
ect*

e AI engine to get the
ect attached to

Allows th
a
cessorObject ()

public
abstract:
IAI2Pr

AI observer obj
this game object.

a
ProcessorObje
ct
(IAI2Processo
rObject*)

i2sAssignAI2
«pure» procObj [

bject* - inout]

t the
I observer to be attached to this

game object.

param:
public
abstract:
void

IAI2ProcessorO

Allows the AI engine to se
A

ai2sGetObject

rientation ()

«pure»
public

:

Orientation data read

O abstract
point4f&

ai2sSetObject
Orientation
(point4f&)

 Orientation data write

«pure»
public
abstract:
void

param: pt [point4f& - inout]

 250

.2 AIB - 1.2.2.2.2.2 .1.4 I 2SceneManager
t «interface» Type: pu stracblic ab Interface

Package:

The scene man

AI2 Interfaces The Object System Implements

ager provides the object list for the component to process.

I2SceneMana rfacIA ger Inte es
Method Type Notes

ai2sGetAI2
cessableObject
s ()

Pro

public
abstract:
IAI2Obje
ctIterator
*

r a list of objects to process.
«pure» Ask the view's scene manager

fo

B - 1.2.2.2.2.2.2.1.5 IAI2View
Type: public abstract «interface» Interface
Package: AI2 Interfaces The Object System Implements

e object system implements this interface to provide "views" into the data. A
iew is just some info ation and acess to a list of objects to process.

 Interfa

The gam
v

IAI2View

 context

ces

rm

Method Type Notes

ai2sGetAI2Vie
wProcessor ()

Get access to the attached
domain-specific view observer

at will process this view.

«pure»
public
abstract:
IAI2View
Processo
r*

th

ai2sAssignAI2
ViewProcessor
(IAI2ViewProc
essor*)

param: viewProc [
IAI2ViewProcessor* - inout]

Set the attached domain-specific
view observer that will process

is view.

«pure»
public
abstract:
void

th

ai2sGetScene
Manager ()

Request access to the object list
in this view.

«pure»
public
abstract:

 251

IAI2Scen
eManage
r*

 252

B - 1.2.2.3.2 Game Object System

The Game Object Logical Module will be responsible for managing the game objects. It
will provide "views" (or object lists and their contexts) to the various domain-specific

odules that are .

tial ide o c to make sure each view contains only
, but for this s ple prototype that will not be done.

 - 1.2.2.3.1 Ob ct Component - Implementation

B - 1.2.2.2.3.1.1 e Object Component Exported Classes

m

It could poten
relavant objects

attached

ly prov bject culling et
im

B

Game

Gam

je

Singleton
Root

- m
- m

_pObj ion: *CDemoGameObjectSystem
_pObj ObjectSystem

ectSystemImplementat
tSystemInterface: *Iec

+ Root()
+ ~Root()
+ createO ctSystem() : IObjectSystem*

Game Object Component Exported Classes
Jeff Plummer
1.0
11/4/2004 11:08:39 AM
11/8/2004 3:41:25 PM

Figure 116 : Game Object Component Exported Classes

B - 1.2.2.2.3.1.1.1.1 Root

bje

Name:
Author:
Version:
Created:
Updated:

ype: public ClassT

 Extends: Singleton.
Package: Game Object Com lasses

 is th d class in the Object component. It represents the initial link
ct system, and

bject system. Root is not part of the formal architecture, it is
enta ecessary to

mmunicate in more ways with the logical component (due to specific library

ponent Exported C

This class e only exporte
to the Object system. From here the game system will connect to the Obje
request an interface to the O
an implem tion connection point. In the real world it may be n
co

 253

initializations, etc.). These "extra" communications can be done through the root object
irectly to the instance of the Object system, rather than through the architectural

d
specified interface.

Root Attributes
Attribute Type Notes

m_pObjectSys

private :
CDemoG

temImplement ameObje
ation ctSystem

m_pObjectSys
temInterface

IObjectS
ystem

private :

Root Methods
Method Type Notes
 Root () public: onstruction/Destruction C
 ~Root () public

abstract:

createObjectS
ystem ()

public:
IObjectS
ystem*

 254

B - 1.2.2.2.3.1.2 Private Game Object Component Implementation

Name: Pri va te Gam e Object Component Implementation
Author: Jeff Plum mer
Version: 1.0
Created: 11/4 /2004 11:19:45 AM
Updated: 11/8 /2004 2:47:17 PM

CDemoCamera

- m_ptCameraLocati on: demoPoint3f
- m_ptCameraLookAt: demoPoint3f

+ CDem oCamera()
+ ~CDemoCamera()
+ setCameraLocation(demoPoint3f&) : void
+ se tCameraLookAt(dem oPoint3f&) : void
+ getCam eraLocation() : demoPoin t3f&
+ getCam eraLookAt() : dem oPoint3 f&
+ gsGet2DCameraLocation() : GraphicsComponent::po int2f&
+ gs3dGet3DCameraLocation() : Graph ics3DComponent::point3f&
+ gs3dGet3DCameraLookAt() : Graph ics3DComponent::point3f&

IObjectSystem
CDemoGameObjectSystem

- m_pM ainObjectSceneM anager: *CDem oObjectSceneManager
- m_pM ainView: *CDem oMainView
- m_pDem oViews: *std::vector<CDem oViewBaseClass *>
- m_pM ainCam era: *CDemoCam era
- m_pIteratorGraph icsViews: *VectorBasedIteratorTempla teClass<GraphicsComponent::IGraph icsView*>
- m_pIteratorGraph ics3DViews: *VectorBasedIteratorTempla teClass<Graphics3DCom ponent::IGraphics3DView*>
- m_pIteratorAIViews: *VectorBasedItera torT emplateClass<AICom ponent::IAIView*>
- m_pIteratorAI2Views: *VectorBasedIteratorT em plateClass<AI2Component::IAI2View*>

+ CDemoGameObjectSystem()
+ ~CDemoGameObjectSystem()
+ ini tia l izeObjectScene() : vo id
+ obTickObjectSystem(floa t) : voi d
+ gsGetGraphicsViews() : GraphicsComponent::IGraphicsViewIterator*
+ gs3dGetGraphi csViews() : Graph ics3DComponent::IGraphics3DViewItera tor*
+ uisGetUserInputViews() : UserInputComponent::IUserInputView Itera tor*
+ aisGetAIViews() : AIComponent::IAIView Iterator*
+ uisGetMouseListeners() : UserInputComponent::IUserInputMouseLi stenerIte rator*
+ ai2sGetAI2Views() : AI2Component::IAI2ViewIterator*
+ uisGetKeyboardListeners() : UserInputComponent::IUserInputKeyboardListenerIterator*

CDemoObject

m_pGraph icsResource
- m_iGraph icsProcessor
m_pGraph ics3DResour
- m_iGraph icsResources
m_ObjectPosition:
m_ObjectOrientati on:
m_ImageOffsetInResourc
m_CurrentOffsetInResource: demoPoin t2i
m_nImageHeight: int
m_nImageWidth: int
- m_iGraph ics3DProcessorObject: *Graphics3DComponent::IGraphics3DProcessorObject
- m_iGraph ics3DResources: *Graphics3DComponent::IStringIte rator
- m_iAIProcessorObject: *AIComponent::IAIProcessorObject
- m_iAI2ProcessorObject: *AI2Component::IAI2ProcessorObject

StringVector: *std::vector<std ::string*>
Object: *GraphicsCom ponent::IGraphicsProcessorObject
ceStringVector: *std ::vector<std ::string*>
: *Graphi csComponent::IStringIterator

dem oPoint3 f
 demoSim pleQuatern ion

e: dem oPoint2 i

+ CDem oObject()
+ ~CDemoObject()
+ «pure» tickObject(floa t) : void
+ setDemoObjectGraphics2DResourceNam e(std::string&) : vo id
+ gsGetGraphicsResources() : GraphicsComponent::IStringIterator*
+ setDemoObjectGraphics2DResourceDimensions(int, i nt) : vo id
+ gsGetGraphicsProcessorObject() : GraphicsComponent::IGraphicsProcessorObject*
+ setDemoObjectGraphics3DResourceNam e(std::string&) : vo id
+ gsAssignGraphicsProcessorObject(GraphicsComponent::IGraphicsProcessorObject*) : voi d
+ setDemoObjectPosition(demoPoin t3f&) : voi d
+ gsGetGraphicInterfacesImplemented() : unsigned in t
+ gsGetResources() : std ::vector<std::string*>*
+ gsCurrentImageOffsetInResource() : Graphi csComponent::point2
+ gsGetWorldPosition() : Graph icsComponent::poin t2f&
+ gsGetImageOffsetInResource() : GraphicsComponent::po int2d
+ gsGetImageHeight() : int
+ gsGetImageWidth() : in t
+ gs3dGetGraphics3DProcessorObject() : Graph ics3DCompon
+ gs3dAssignGraphi cs3DProcessorObject(Graph ics3DCompon
+ gs3dGetGraphic3DIn terfacesImplemented() : unsigned int
+ gs3dGetGraphics3DResources() : Graphi cs3DComponent::ISt

d&

&

ent::IGraphics3DProcessorObject*
ent::IGraphics3DProcessorObject*) : vo id

ring Ite rator*
&+ gs3dGet3DObjectLocation() : Graphics3DComponent::poin t3f

+ gs3dGet3DObjectOrientationAsQuatern ion() : Graphics3DComponent::poin t4f&
+ aisGetAIProcessorObject() : AIComponent::IAIProcessorObject*
+ aisAssignAIProcessorObject(AIComponent::IAIProcessorObject*) : voi d
+ aisGetObjectPosition() : AIComponent::point3f
+ aisSetObjectPositi on(AIComponent::poin t3f&) : void
+ ai2sGetAI2ProcessorObject() : AI2Component::IAI2ProcessorObject*
+ ai2sAssignAI2ProcessorObject(AI2Component::IAI2ProcessorObject*) : voi d
+ ai2sGetObjectOrientation() : AI2Component::point4 f&
+ ai2sSetObjectOrientation(AI2Component::point4 f&) : void

CDemoObjectSceneManager

m _vManagedObjects: *std::vector<CDemoObject*>
- m _pIteratorGraphics3DObjects: *VectorBasedItera torT em plateClass< Graphics3DComponent::IGraphics3DProcessableObject*>
- m _pIteratorGraphicsObjects: *VectorBasedIteratorT em plateClass< GraphicsCom ponent::IProcessableGraphicsObject*>
- m _pIteratorAIObjects: *VectorBasedIteratorTempla teClass< AIComponent::IAIProcessab leObject*>
- m _pIteratorAI2Objects: *VectorBasedIteratorT emplateClass< AI2Component::IAI2ProcessableObject*>

+ CDemoObjectSceneM anager()
+ ~CDemoObjectSceneManager()
+ manageObjects() : void
+ insertObject(CDemoObject*) : void
+ obTickObjectSceneManager(float) : void
+ gs3dGetVisibleGraphi cs3DObjects() : Graphics3DComponent::IGraphi cs3DObjectIte rator*

mponent::IAIObjectIterator*
ponent::IGraph icsObjectIterator*
omponent::IAI2ObjectIterator*

+ ai sGetAIProcessab leObjects() : AICo
+ gsGetGraph icsObjects() : GraphicsCom
+ ai2sGetAI2ProcessableObjects() : AI2C

CDemoView BaseClass

-
-
-
-
-

 m _pDemoObjectSceneM anager: *CDemoObjectSceneManager
 m _pDemoCam era: *CDemoCam era
 m _pViewProcessor: *GraphicsCom ponent::IGraphicsViewProcessor
 m _pView3DProcessor: *Graphics3DComponent::IGraphics3DViewProcessor
 m _pAIViewProcessor: *AICom ponent::IAIViewProcessor

- m _pAI2ViewProcessor: *AI2Component::IAI2ViewProcessor

+ CDemoViewBaseClass()
+ ~CDemoViewBaseClass()
+ getObjectSceneManager() : CDemoObjectSceneManager*
+ setObjectSceneManager(CDem oObjectSceneManager*) : vo id
+ getDemoCam era() : CDem oCamera*
+ gsGetViewRect() : GraphicsComponent::iRect*
+ gsGetSceneManager() : GraphicsComponent::IGraphi csSceneManager*
+ setDemoCam era(CDemoCamera*) : vo id
+ gsGetGraph icsViewProcessor() : GraphicsComponent::IGraphicsViewProcessor*
+ gsGetSubViews() : GraphicsComponent::IGraphicsViewIterator*
+ gsAssignGraphicsViewProcessor(GraphicsComponent::IGraphicsViewProcessor*) : void
+ gsGetEnabledIn terfaceFlagsForView() : unsigned in t
+ gsGetSceneCamera() : Graph icsComponent::IGraphicsCamera*
+ onKeyPressed(UserInputComponent::IUserInputKeyEvent&) : void
+ onMouseMove(UserInputComponent::IUserInputMouseEvent&) : vo id
+ onMouseLeftCl icked(UserInputComponent::IUserInputMouseEvent&) : void
+ gs3dGetGraphics3DViewProcessor() : Graph ics3DComponent::IGraphics3DViewProcessor*
+ onMouseRightCl i cked(UserInputComponent::IUserInputMouseEvent&) : void
+ gs3dAssignGraph ics3DViewProcessor(Graph ics3DComponent::IGraphics3DViewProcessor*) : void
+ gs3dGet3DSceneCamera() : Graphics3DComponent::IGraphi cs3DCamera*
+ gs3dGetViewRect() : Graph ics3DComponent::iRect*
+ gs3dGetSceneManager() : Graphics3DComponent::IGraphics3DSceneManager*
+ gs3dGetSubViews() : Graph ics3DComponent::IGraphics3DViewIterator*
+ gs3dGetEnab ledInterfaceFlagsForView() : unsigned int
+ ui sGetUIViewProcessor() : UserInputComponent::IUserInputViewProcessor*
+ ui sAssignUIViewProcessor(UserInputComponent::IUserInputViewProcessor*) : voi d
+ ui sGetUISubViews() : UserInputComponent::IUserInputView Iterator*
+ ui sGetUIViewRect() : UserInputComponent::UIRect*
+ ui sGetUISceneManager() : UserInputComponent::IUserInputSceneManager*
+ ai sGetAIViewProcessor() : AIComponent::IAIViewProcessor*
+ ai sAssignAIViewProcessor(AIComponent::IAIViewProcessor*) : void
+ ai sGetSceneManager() : AIComponent::IAISceneManager*
+ ai2sGetAI2ViewProcessor() : AI2Component::IAI2ViewProcessor*
+ ai2sAssignAI2ViewProcessor(AI2Component::IAI2ViewProcessor*) : void
+ ai2sGetSceneManager() : AI2Component::IAI2SceneManager*

CTriangleGameObject

- m_idegRotate: int

+ CTri angleGameObject()
+ ~CTriangleGameObject()
+ tickObject(f loat) : void

CDemoMainView

+ CDemoM ainView()
+ ~CDemoMainView()

-m_pDemoCam era

-m _pDemoObjectSceneManager-m_pObjectSceneManager

#m_pCamera

-m_pMainCamera

+m_pMainView

-m _pM ainObjectSceneManager

Figure 117 : Private Game Object Component Implementation

 - 1.2.2.2.3.1.2.1.1 CDemoCamera

B
ype: public ClassT

 Implements: I2DGraphicsCamera, IGraphics3DCamera.
 Private Game Object Component Implementation

mera Attributes

Package:

CDemoCa
Attribute Type Notes

m_ptCameraL
ocation

 private :
demoPoi
nt3f

m_ptCameraL
ookAt

private :
demoPoi
nt3f

CDemoCamera Methods
Method Type Notes

CDemoCamer

public: Construction/Destruction

a ()

 255

~CDemoCame
ra ()

public
abstract:

setCameraLoc

n
(demoPoint3f

)

ram: loc [demoPoint3f& -
inout]

Setters
atio

public:
void

pa

&

setCameraLoo void
kAt

public: param: lookAt [demoPoint3f& -
inout]

(demoPoint3f
&)

getCameraLoc
ation ()

public:
demoPoi
nt3f&

Getters

getCameraLoo
kAt ()

public:
demoPoi
nt3f&

ame

public

nt::point
2f&

nt
es////////////////////
phicsCamera

gsGet2DC abstract: Interfac
Compone

raLocation () Graphics
Compone

I2DGra

 publi
gs3dGet3D

t
Ca

ion

c
t:

IGraphics3DCamera

meraLoca
()

abstrac
Graphics
3DComp
onent::po
int3f&

gs3dGet3DCa

eraLookAt ()
3DComp

t::po

public
abstract:
Graphics

m

onen
int3f&

B - 1.2.2.2.3.1.2 CDemoGameObjectSystem .1.2
 public ClassType:

 Extends: IObjectSystem. Implements: IAI2ObjectSystem, IAIObjectSystem,

 256

IGraphics3DObjectSystem, IGraphicsObjectSystem, IObjectSystem,
jectS

Package: Private Game Object Component Implementation

CDemoGameObjectSystem Attributes

IUserInputOb ystem.

Attribute Type Notes

m_pMainObje
ctSceneManag
er

private :
CDemoO
bjectScen
eManage
r

m_pMainView

private :
CDemoM
ainV

iew

m_pDemoVie
ws

priva
std::vect
or<CDe
moViewB
aseClass

 te :

*>

 private :
m_pMainC CDemoCam

a amera er

m_pIteratorGr
aphicsViews

VectorBa
sedIterat

private :

pla
teClass<
Graphics
Compone
nt::IGrap
hicsView
*>

orTem

m_pIteratorGr
aphics3DView
s

private :
VectorBa
sedIterat
orTempla
teClass<
Graphics
3DComp
onent::I
Graphics
3DView*

 257

>
 rivate :
m_pIteratorAI

p
VectorBa

teClass<
AICompo

*>

Views sedIterat
orTempla

nent::IAI
View

m_pIteratorAI
2Views

private :
VectorBa
sedIterat
orTempla
teClass<
AI2Comp
onent::IA
I2View*
>

CDemoGameObjectSystem Methods
Method Type Notes

CDemoGame
ObjectSystem
)

public: Construction/Destruction

(

~CDemoGame
ObjectSystem

public
abstract:

()

initializeO

cene ()
bjec

public:
void

tS

obTickObjectS

public
abstract:

param: tDiff [float - in]

ystem (float) void

gsGetGraphics
Views ()

public
abstract:
Graphics
Compone
nt::IGrap
hicsView
Iterator*

IGraphicsObjectSystemInterface
Overridden Functions
 //

gs3dGetGraph

public
abstract:

IGraphics3DObjectSystemInterf
ace Overridden Functions

 258

icsViews Gra
3DComp
onent::I
Graphics
3DViewIt
erator*

 () phics //

uisGetUserInp
utViews ()

public
abstract:
UserInpu
tCompon
ent::IUse
rInputVie
wIterator
*

IUserInputObjectSystemInterfac
e Overridden Functions
 //

aisGetAIView
s ()

public
abstract:
AICompo
nent::IAI
ViewIter
ator*

IAIObjectSystemInterface
Overridden Functions
 //

uisGetMouseL
isteners ()

public
abstract:
UserInpu
tCompon
ent::IUse
rInputMo
useListen
erIterato
r*

ai2sGetAI2Vie
ws ()

public
abstract:
AI2Comp
onent::IA
I2ViewIte
rator*

IAI2ObjectSystemInterface
Overridden Functions
 //

uisGetKeyboar
dListeners ()

public
abstract:
UserInpu
tCompon
ent::IUse
rInputKe
yboardLi
stenerIter
ator*

 259

B - 1.2.2.2.3.1.2.1.3 CDemoMainView
Type: public Class
 Extends: CDemoViewBaseClass.
Package: Private Game Obj pon ion

CDemoMainView Methods

ect Com ent Implementat

Method Type Notes
 public:
CDemoMainV
iew ()

Construction/Destruction

~CDemoMain

public

View ()
abstract:

B - 1.2.2.2.3.1.2 CDemoObject .1.4
Type: public abstract Class

 Im : I2DGraphicsObject, I2DSpriteGraphicsObject,
le ProcessableObject, IAudioObject,

ics3DPro ject, IProcessableGraphicsObject.
Package: Private Game Object Component Implementation

bject A

IAI2Processab
IGraph

plements
Object, IAI
cessableOb

CDemoO ttributes
Attribute Type Notes

m_pGraphicsR
sourceString

e
Vector

protected
:
std::vect
or<std::s
tring*>

m_iGraphicsPr
ocessorObject

IGrap

 private :
Graphics
Compone
nt::
hicsProc
essorObj
ect

 protected

 260

m_pGraphics3
ResourceStriD

ngVector

:
std::vect
or<std::s
tring*>

m_iGraphicsR
esources pone

 private :
Graphics
Com
nt::IStrin
gIterator

m_ObjectPosit
ion i

 protected
:
demoPo
nt3f

m_ObjectOrie
ntation

 protected
:
demoSim
pleQuate
rnion

m_ImageOffse

nResource demoPoi
nt2i

 protected
:

tI

 protected
m_CurrentOff

tInResource
nt2i

se
:
demoPoi

m_nImageHei
ght

protected
:
int

m_nImageWid :

th

protected

int

ocessorOb
ct

 :
s
p

onent::I
Graphics
3DProce
ssorObje
ct

private
Graphic
3DCom

m_iGraphics3
DPr
je

m_iGraphics3
DResources

private :
Graphics
3DComp
onent::IS
tringItera

 261

tor
 rivate :
m_iAIProcess

p
AICompo

rObject

orObject nent::IAI
Processo

rObject

private :
A
onent::IA
I2Proces
sorObjec
t

m_iAI2Proces I2Comp
so

CDemoObject Methods
Method Type Notes
 CDemoObject
()

public: Construction/Destruction

~CDemoObjec
t ()

public
abstract:

 tickObject
(float)

«pure»
public
ab
void

param: tDiff [float - in]

stract:

setDemoObjec
tGraphics2DR
esourceName
(std::string&)

public:
void

param: resName [std::string& -
inout]

gsGetGraphics
Resources ()

public
abstract:
Graphics
Compone
nt::IStrin
gIterator
*

IGraphicsObject

 //

setDemoObjec
tGraphics2DR
esourceDimen
sions (int, int)

public:
void

param: w [int - in]
param: h [int - in]

gsGetGraphics

public
abstract:

 262

ProcessorObje Graphics
Com
nt::IGrap
hicsProc
essorObj
ect*

ct () pone

tDemoObjec

tGraphics3DR
esourceName
(std::string&)

public:
void

pa s3D
std::string& - inout]

ram: re Name [
se

gsAssignGrap

public
abstract: Graphi

hicsProcessor void rocessorO
Object

param: procObj [
csComponent::IGraphicsP

bject* - inout]

(GraphicsCom
ponent::IGrap
hicsProcessor
Object*)

setDemoObjec
tPosition
(demoPoint3f
&

public:
void

param: p [demoPoint3f& - inout
]

)

gsGetGraphicI
nterfacesImple

ented ()

public
abstract:

ed

m
unsign
int

gsGetResource
s ()

public
abstract:
std::vect

or<std::s
tring*>*

gsCurrentImag
OffsetInReso
rce ()

ract:
Graphics
Compone
nt::point

I2DSpriteGraphicsObject

 //

public
abst

e
u

2d&

gsGetWorldPo
sition ()

abstract:
Graphics
Compone

t

//
public

nt::poin
2f&

I2DGraphicsObject

 263

gsGetImageOf
fsetInResou
()

rce
one

nt::point
2d&

public
abstract:
Graphics
Comp

gsGetImageHe

public
abstract:

ight () int

gsGetImageWi
dth ()

abstract:
int

 public

gs3dGetGraph
ics3DProcesso
rObject ()

public
abstract:
Graphics
3DComp
onent::I
Graphics
3DProce
ssorObje
ct*

IGraphics3DObject

 //

gs3dAssignGr
aphics3DProce
ssorObject
(Graphics3DC
omponent::IGr
aphics3DProc
essorObject*)

public
abstract:
void

param: procObj [
Graphics3DComponent::IGraphi
cs3DProcessorObject* - inout]

gs3dGetGraph
ic3DInterfaces
Implemented
()

public
abstract:
unsigned
int

gs3dGetGraph
ics3DResource
s ()

public
abstract:
Graphics
3DComp
onent::IS
tringItera
tor*

gs3dGet3DObj
ectLocation ()

public
abstract:
Graphics
3DComp

 264

onent::po
int3f&

gs3dGet3DObj
ectOrientation
AsQuaternion
()

public
abstract:
Graphics

int4f&

3DComp
onent::po

aisGetAIProce
ssorObject ()

public
abstract:
A
n
Processo
rObject*

IAIProcessableObject
 //

ICompo
ent::IAI

isAssignAIPr

ocessorObject
(AIComponent
::IAIProcessor

abstract:
void

AIComponent::IAIProcessorObj
ect* - inout]

public param: procObj [
a

Object*)

aisGetObjectP

public
abstract:

osition () AICompo
nent::poi
nt3f

aisSetObjectP
osition

public
abstract:
void

param: pos [
AIComponent::point3f& - inout
]

(AIComponent
::point3f&)

i2sGetAI2a

cessorObject (
Pro

)

public
abstract:
AI2Comp
onent::IA
I2Proces
sorObjec
t*

IAI2ProcessableObject

 //

ai2sAssignAI2
ProcessorObje
ct

e

sorObject*)

: procObj [
AI2Component::IAI2ProcessorO
bject* - inout]

(AI2Compon
nt::IAI2Proces

public
abstract:
void

param

 public

 265

a
Orientation ()
i2sGetObject

abstract:
AI2Comp
onent::po
int4f&

ai2sSetObject

rientation
ract:

void

param: pt [
AI2Component::point4f& - inout
]

public
abst

O
(AI2Compone
nt::point4f&)

B - 1.2.2.2.3.1.2.1.5 CDemoObjectSceneManager
public ClassType:
Implements: I anager,

cs3DSceneManager,
entation

c r Attributes

IGraphi
Package: Private Game Object Component Implem

AI2SceneManager, IAISceneM
 IGraphicsSceneManager.

CDemoObjectS eneManage
Attribute Type Notes

m
Objects

_vManaged
protected
:
std::vect
or<CDe
moObject
*>

_pIteratorGr a

at
orTempla
teClass<
Graphics
3DComp

I

ce
ssableOb
ject*>

m
aphics3DObje
cts

private :
VectorB
sedIter

onent::
Graphics
3DPro

m_pIteratorGr

private :
VectorB

teClass<

aphicsObjects sedIterat
a

orTempla

 266

Graphics

raphicsO

Compone
nt::IProc
essableG

bject*>

m
Objects

_pIteratorAI

cessa

private :
VectorBa
sedIterat
orTempla
teClass<
AICompo
nent::IAI
Pro
bleObject
*>

m_pIteratorAI

Objects
rBa

roces

2

private :
Vecto
sedIterat
orTempla
teClass<
AI2Comp
onent::IA
I2P
sableObj
ect*>

CDemoObjectSc er Methods eneManag
Method Type Notes

CDemoObject
SceneManager

onstruction/Destruction public: C

()

~CDemoObjec abstract:
tSceneManage

()

public

r

manage
s ()

Object
public
abstract:
void

 insertObject
(CDemoObject
)

public:
void

* -
inout]

*

param: obj [CDemoObject

 public: param: fdiff [float - in]

 267

obTickObjectS
ceneManager
(float)

 void

gs3dGetVisibl
eGraphics3DO
bjects ()

t::I
cs

r*

 public
abstract:
Graphics
3DComp
onen
Graphi
3DObject
Iterato

aisGetAIProce
ssableObjects
()

public
abstract:
AICompo
nent::IAI

te

ISceneManager

ObjectI
rator*

IA

gsGetGraphics
Objects ()

public
abstract:
Graphics
Compone

ap

tor
*

r

nt::IGr
hicsObje
ctItera

IGraphicsSceneManage

ai2sGetAI2Pro
cessableObject

()

t:
AI2Comp

ctI
terator*

ager

s

public
abstrac

onent::IA
I2Obje

IAI2SceneMan

B - 1.2.2.2.3.1.2 CDemoViewBaseClass .1.6
u assType: p blic Cl

Implements: IAI2View, IAIView, IGraphics3DView, IGraphicsView,
putView.

ackage: Private Game Object Component Implementation

CDemoViewBaseClass Attributes

IUserIn
P

Attribute Type Notes

 268

m_pDemoObj
ectSceneMana

er
en

eManage
r

 private :
CDemoO
bjectSc

g

m_pDemoCa

private :
CDemoC

mera amera

m_pViewProc

private :
Graphics

essor Compone
nt::IGrap

r

hicsView
Processo

 private :
m_pView3DPr

cessor
ics

3DViewP
rocessor

o
Graph
3DComp
onent::I
Graphics

m
ocessor

_pAIViewPr
private :

o

AICompo
nent::IAI
ViewPr
cessor

m_pAI2ViewP
rocessor

r

 private :
AI2Comp
onent::IA
I2ViewP
ocessor

CDemoViewBaseClass Methods
Method Type Notes

CDemoViewB
aseClass ()

public: Construction/Destruction

~CDemoView
BaseClass ()

public
abstract:

getObjectScen
eManager ()

public:
CDemoO
bjectScen

Gets/Sets

 269

eManage
r*

setO
eManager
(CDemoObject
SceneM

bjectScen

anager
*)

public:
void jectSceneManager* -

out]

param: pMgr [
CDemoOb
in

getDemoCame
ra ()

CDemoC
amera*

 public:

gsGetViewRe
t ()

c
ics

e
ct

GraphicsComponent::IGraphics
View

public
abstract:
Graph
Compon
nt::iRe
*

gsGetSceneMa
nager ()

abstract:
Graphics
Compone
nt::IGrap
hicsScen
eManage
r*

 public

setDemoCame
ra
(CDemoCame
ra*)

public:
void

param: pCamera [
CDemoCamera* - inout]

gsGetGraphics
ViewProcessor
()

public
abstract:
Graphics
Compone
nt::IGrap
hicsView
Processo
r*

Graphics///////////////////////////////////
//////////
GraphicsComponent::IGraphics
View

gsGetSubView
s ()

public
abstract:
Graphics
Compone
nt::IGrap
hicsView
Iterator*

 270

icsViewProce
ssor
(GraphicsCom
ponent::IGrap
hicsViewProce

or*)

public
a
void

param: viewProc [
ics

ViewProcessor* - inout]

gsAssignGrap bstract: GraphicsComponent::IGraph
h

ss

gsGetEnabledI
nterfaceFlagsF
orView ()

public
abstract:
unsigned
int

gsGetSceneCa
mera ()

public
abstract:
Graphics
Compone
nt::IGrap
hicsCam
era*

 onKeyPressed
(UserInputCo
mponent::IUse
rInputKeyEven
t&)

public
abstract:
void

param: keyEvent [
UserInputComponent::IUserInpu
tKeyEvent& - inout]

IUserInput::IUserInputKeyboard
Listener

onMouseMove
(UserInputCo
mponent::IUse
rInputMouseE
vent&)

public
abstract:
void

param: event [
UserInputComponent::IUserInpu
tMouseEvent& - inout]

IUserInput::IUserInputMouseLis
tener

onMouseLeftC
licked
(UserInputCo
mponent::IUse
rInputMouseE
vent&)

public
abstract:
void

param: event [
UserInputComponent::IUserInpu
tMouseEvent& - inout]

gs3dGetGraph
ics3DViewPro
cessor ()

public
abstract:
Graphics
3DComp
onent::I
Graphics
3DViewP

Graphics3D//////////////////////////////
///////////////
Graphics3DComponent::IGraphi
cs3DView

 271

rocessor
*

 publ
onMouseRight
Clicked
(UserInputCo
mponent::IUse
rInputMouseE
vent&)

ic
abstract:
void

param: event [
UserInputComponent::IUserInpu
tMouseEvent& - inout]

gs3dAssignGr
aphics3DView
Processor
(Graphics3DC
omponent::IGr
aphics3DView
Processor*)

public
abstract:
void

param: viewProc [
Graphics3DComponent::IGraphi
cs3DViewProcessor* - inout]

gs3dGet3DSce
neCamera ()

public
abstract:
Graphics
3DComp
onent::I
Graphics
3DCame
ra*

ect ()

public
abstract:
Graphics
3DComp
onent::iR
ect*

gs3dGetView
R

 public
gs3dGetScene
Manager ()

abstract:
Graphics
3DComp
onent::I
Graphics
3DScene
Manager
*

g
ews ()
s3dGetSubVi

cs

public
abstract:
Graphi
3DComp
onent::I

 272

Graphics
3DViewIt
erator*

nabl

Fla
w ()

public

int

gs3dGetE abstract:
edInterface
gsForVie

unsigned

uisGetUIView
Processor ()

abstract:
UserInpu
tCompon
ent::IUse
rInputVie
wProcess

///////////
UserInput::IUserInputView

public

or*

UserInput/////////////////////////////////

uisAssignUIVi abstract: Use
ewProcessor

o

o
sor*)

public param: viewProc [
rInputComponent::IUserInpu

rocessor* - inout]
(UserInputC
mponent::IUse
rInputViewPr
ces

void tViewP

uisGetUISubV
iews ()

public
abstract:
UserInpu
tCompon

e
ie

ent::IUs
rInputV
wIterator
*

uisGetUIView
Rect ()

public
abstract:
UserInpu

R
tCompon
ent::UI
ect*

uisGetUIScene
Manager ()

abstract:
UserInpu
tCompon
ent::IUse
rInputSce
neMana

public

g
er*

 public AI//

 273

aisGetAIV
Processo

abstract: / AIComponent::IAIView iew
r () AICompo

nent::IAI
ViewPro
cessor*

 public param: view
aisAssignAIVi
wProcessor

t

essor*)

t:
void

Proc [
ponent::IAIViewProcess

e
(AIComponen
::IAIViewProc

abstrac AICom
or* - inout]

aisGetSceneM
anager ()

public
abstract:
AICompo
nent::IAI
SceneMa
nager*

ai2sGetAI2Vie
wProcessor ()

public
abstract:
AI2Comp
onent::IA
I2ViewPr
ocessor*

AI2Component::IAI2View

ai2sAssignAI2
ViewProcessor
(AI2Compone
nt::IAI2ViewP
rocessor*)

public
abstract:
void

param: viewProc [
AI2Component::IAI2ViewProce
ssor* - inout]

ai2sGetScene
Manager ()

public
abstract:
AI2Comp
onent::IA
I2Scene
Manager
*

B - 1.2.2.2.3.1.2.1.7 CTriangleGameObject
Type: public Class
 Extends: CDemoObject. Implements: I2DGraphicsObject,
I2DSpriteGraphicsObject.
Package: Private Game Object Component Implementation

 274

TriangleGameObject Attributes

C
Attribute Type Notes
 m_idegRotate private :

int

CTriangleGameOb thoject Me ds
Method Type Notes

CTriangleGam
eObject ()

public: Construction/Destruction

 public
~CTriangle abstract: Ga

eObject () m
 tickObject

t)
public
abstract:

param: tDiff [float - in]
 (floa

void

 275

B - 1.2.2.2.3.1.2.2 Data Structures

«struct»

demoPoint2i

+ x: int
+ y: int

+ demoPoin
+ demoPoin
+ operator=(

t2i ()
t2i (int,
demoP 2i&) : demoPoint2i&

 int)
oint

«struct»
demoPoint3f

+ x: float
+ y: float
+ z: float

+ demoPoint3f()
+ operator=(demoPoint3f&) : demoPoint3f&

+botRight

«struct»
demoRect

+ topLeft: demoPoint2i
+ botRight: demoPoint2i

+ operator=(demoRect&) : demoRect&

+topLeft

 - Data Structures

 - 1.2.2.2.3.1.2.2.1 demoPoint2i

Figure 118 : Game Object System

B
Type: public «struct» Class
Package: Data cture

i Att

Stru s

demoPoint2 ributes
Attribute Type Notes
 x public :

int
 y public :

int

demoPoint2i Methods
Method Type Notes
 demoPoint2i

public:

()
 demoPoint2i
(int, int)

public: param: x1 [int - in]
param: y1 [int - in]

 276

 operator= c:
i

param: pt [demoPoint2i& -
out]

(demoPoint2i
&)

publi
demoPo
nt2i&

in

B - 1.2.2.2.3.1.2 demoPoint3f .2.2
u ct» ClassType: p blic «stru

res

tt

Package: Data Structu

demoPoint3f A ributes
Attribute Type Notes
 x public :

float

 y public :
float

 z public :
float

demoPoint3f Methods
Method Type Notes
 demoPoint3f public:
()
 o
(demoPoint3f
&)

perator=
i

ram: pt [demoPoint3f& -
inout]

public:
demoPo
nt3f&

pa

B - 1.2.2.2.3.1.2.2.3 demoRect
ype: public «struct» ClassT

Package: Data Structures

Attr

demoRect ibutes
Attribute Type Notes
 topLeft public :

demoPoi
nt2i

 botRight public :

 277

demoPo
nt2i

i

demoRect Methods
Method Type Notes
 operator=

)
ic:

c
param: r [demoRect& - inout]

(demoRect&
publ
demoRe
t&

 278

B - 1.2.2.3.2 Game Object Component - Interfaces

«interface»
IObjectSystem

+ «pure» obTickObj tSystem(float) : void

Object Component - Interfaces
Author: Jeff Plummer

Figure 119 : Game Object Component - Interfaces

B - 1.2.2.2.3.2.1.1.1 IObjectSystem

Name: Game

Version: 1.0
Created: 10/19/2004 5:08:08 PM
Updated: 11/8/2004 3:42:16 PM

ec

Type: public abstract «interface» Interface
 Implements: IGraphicsObjectSystem, IUserInputObjectSystem.
Package: Game Object Component - Interfaces

IObjectSystem Interfaces
Method Type Notes

obTickObjectS
ystem (float)

«pure»
public
abstract:
void

param: tDiff [float - in]

 279

B - 1.2.2.3.3 Component Attachings

This class diagram shows how the object sys implements the necessary interfaces to
interoperate with the AI System.

tem

CDemoObject

CTriangleGameObject
CDemoObj ectSceneManager

«interface»
IAIObjectSystem

+ «pure» aisGetAIViews() : IAIViewIterator*

IAICapableObject
«interface»

IAIProcessableObject

+ «pure» aisGetAIProcessorObject() : IAIProcessorObject*
+ «pure» aisAssignAIProcessorObject(IAIProcessorObject*) : void
+ «pure» aisGetObjectPosi tion() : point3f
+ «pure» aisSetObjectPosi tion(point3f&) : void

«interface»
IAISceneManager

+ «pure» aisGetAIProcessableObjects() : IAIObjectIterator*

«interface»
IAIView

+ «pure» aisGetAIViewProcessor() : IAIViewProcessor*
+ «pure» aisAssignAIViewProcessor(IAIViewProcessor*) : void
+ «pure» aisGetSceneManager() : IAISceneManager*

CDemoView BaseClass

IObjectSystem
CDemoGameObj ectSystem

Name: Game Object System - AI Interface Implementations
Author: Jeff Plummer
Version: 1.0
Created: 11/4/2004 1:37:58 PM
Updated: 11/8/2004 3:43:03 PM

The simple design is NOT presented as T HE DESIGN T O USE for
this archi tecture. It is merely a simple implementation of this
archi tecture.

-m_pObjectSceneManager

Figure 120 : Game Object System - AI Interface Implementations

This class diagram shows how the object system implements the necessary interfaces to
interoperate with the AI2 System.

Name: Game Object System - AI2 Interface Implementations
Author: Jeff Plummer
Version: 1.0
Created: 11/4/2004 3:22:47 PM
Updated: 11/8/2004 3:43:11 PM

CDemoObject

CTriangleGameObject
CDemoObjectSceneManagerCDemoView BaseClass

IObjectSystem
CDemoGameObjectSystem

«interface»
IAI2View

+ «pure» ai2sGetAI2ViewProcessor() : IAI2ViewProcessor*
+ «pure» ai2sAssignAI2ViewProcessor(IAI2ViewProcessor*) : void
+ «pure» ai2sGetSceneManager() : IAI2SceneManager*

«interf
IAI2Scen

ace»
eManager

+ «pure» ai2sGetAI2ProcessableObjects() : IAI2ObjectIterator*

IAI2CapableObject
«interface»

IAI2ProcessableObject

+ «pure» ai2sGetAI2ProcessorObject() : IAI2ProcessorObject*
+ «pure» ai2sAssignAI2ProcessorObject(IAI2ProcessorObject*) : void
+ «pure» ai2sGetObjectOrientation() : point4f&
+ «pure» ai2sSetObjectOrientation(point4f&) : void

«interface»
IAI2ObjectSystem

+ «pure» ai2sGetAI2Views() : IAI2ViewIterator*

The simple design is NOT presented as T HE DESIGN TO USE for
this archi tecture. It is merely a simple implementation of this
archi tecture.

-m_pObjectSceneManager

g ame Object System - AI2 Interface Implementations

his class diagram shows how the object system implements the necessary interfaces to
teroperate with the 2D graphics System.

Fi

ure 121 : G

T
in

 280

IGraphicsCapableObject
«interface»

I2DGraphicsObject

+ «pure» gsGetWorldPosi tion() : point2f&
+ «pure» gsGetImageOffsetInResource() : point2d&
+ «pure» gsGetImageHeight() : int
+ «pure» gsGetImageWidth() : int

IGraphicsCapableObject
«interface»

IProcessableGraphicsObject

CDemoObject

CDemoView BaseClassCDemoObj ectSceneManager

«interface»
IGraphicsSceneManager

+ «pure» gsGetGraphicsObjects() : IGraphicsObjectIterator*

«interface»
IGraphicsView

+
+

«pure» gsGetGraphicsViewProcessor() : IGraphicsViewProcessor*
«pure» gsGetViewRect() : iRect*
«pure» gsAssignGraphicsViewProcessor(IGraphicsViewProcessor*) : vo id
«pure» gsGetSceneManager() : IGraphicsSceneManager*
«pure» gsGetSceneCamera() : IGraphicsCamera*
«pure» gsGetSubViews() : IGraphicsViewIterator*
«pure» gsGetEnabledInterfaceFlagsForView() : unsigned in t

+
+
+
+
+

IGraphicsCapableObject
«interface»

I2DSpriteGraphicsObject

+ «pure» gsCurrentImageOffsetInResource() : po int2d&
+ «pure» gsGetGraphicsProcessorObject() : IGraphicsProcessorObject*
+ «pure» gsAssignGraphicsProcessorObject(IGraphicsProcessorObject*) : vo id
+ «pure» gsGetGraphicInterfacesImplemented() : unsigned in t
+ «pure» gsGetGraphicsResources() : IStringIterator*
+ «pure» gsGetResources() : std::vector<std::string*>*

CDemoCamera

IGraphicsCamera
«interface»

I2DGraphicsCamera

+ «pure» gsGet2DCameraLocation() : po int2f&

CTriangleGameObj ect

Name: Game Object System - Graphic Interface Implementations
Author: Jeff Plummer
Version: 1.0
Created: 6/18/2004 2:41:59 PM
Updated: 11/8/2004 3:43:21 PM

IObjectSystem

CDemoGameObj ectSystem

«interface»
IAIObjectSystem

+ «pure» aisGetAIViews() : IAIView Iterator*

-m_pObjectSceneManager

#m _pCamera

gure 122 : Gam Interface Implementations

This class diagram shows how the object system implements the necessary interfaces to
interoperate with the Graphic

Fi

e Object System - Graphic

s3D System.

CDemoObject

CDemoView BaseClassCDemoObj ectSceneManager

CDemoCamera

CTriangleGameObj ect

Name: Game Object System - Graphic3D Interface Implementa
Author: Jeff Plummer
Version: 1.0
Created: 11/4/2004 4:08:21 PM
Updated: 11/8/2004 3:43:31 PM

tions

The simple design i s NOT presented as THE DESIGN TO USE for
th is architecture. It is merely a simple implementation of this
architecture.

IObjectSystem
CDemoGameObj ectSystem

IGraphics3DCapableObject
«interface»

IGraphics3DProcessableObject

+ «pure» gs3dGetGraphics3DProcessorObject() : IGraphics3DProcessorObject*
+ «pure» gs3dAssignGraphics3DProcessorObject(IGraphics3DProcessorObject*) : void
+ «pure» gs3dGetGraphic3DInterfacesImplemented() : unsigned int
+ «pure» gs3dGetGraphics3DResources() : IStringIterator*
+ «pure» gs3dGet3DObjectLocation() : point3f&
+ «pure» gs3dGet3DObjectOrientationAsQuaternion() : point4f&

«interface»
IGraphics3DObjectSystem

+ «pure» gs3dGetGraphicsViews() : IGraphics3DViewIterator*

«interface»
IGraphics3DCamera

+ «pure» gs3dGet3DCameraLocation() : point3f&
+ «pure» gs3dGet3DCameraLookAt() : point3f&

«interface»
IGraphics3DView

+ «pure» gs3dGetGraphics3DViewProcessor() : IGraphics3DViewProcessor*
+ «pure» gs3dAssignGraphics3DViewProcessor(IGraphics3DViewProcessor*) : void
+ «pure» gs3dGet3DSceneCamera() : IGraphics3DCamera*
+ «pure» gs3dGetViewRect() : iRect*
+ «pure» gs3dGetSceneManager() : IGraphics3DSceneManager*
+ «pure» gs3dGetSubViews() : IGraphics3DViewIterator*
+ «pure» gs3dGetEnabledInterfaceFlagsForView() : unsigned int

«interface»
IGraphics3DSceneManager

+ «pure» gs3dGetVisib leGraphics3DObjects() : IGraphics3DObjectIterator*

#m_pCamera

-m_pObjectSceneManager

Figure 123 : Game face Implementations

 Object System - Graphic3D Inter

 281

B - 1.2.2.4.2 e System Gam

CDemoApplication

- m_hInstance: HINSTANCE
- m_pIObjectSystem: *O
- m_pIGraphicsSystem

bjectComponent::IObjectSystem
: *GraphicsComponent::IGraphicsSystem

- m_pIGraphics3DSystem: *Graphics3DComponent::IGraphics3DSystem
- m_pIUserInputSystem: *UserInputComponent::IUserInputSystem
- m_pINetworkSystem: *NetworkComponent::INetworkSystem
- m_pIAudioSystem: *AudioComponent::IAudioSystem
- m_pIAISystem: *AIComponent::IAISystem
- m_pIAI2System: *AI2Component::IAI2System

+ CDemoAppl ication(HINSTANCE)
+ ~CDemoAppl ication()
+ id
+) : void

Name: Game System
Author: Jeff Plummer
Version: 1.0
Created: 11/8/2004 9:18:07 AM
Updated: 11/8/2004 9:19:55 AM

Initial ize() : vo
StartLooping(

T he simple design is NOT presented as THE DESIGN T O USE for
this architecture. It is merely a simple implementation of this
architecture.

Figure 124 : Game System

B - 1.2.2.2.4.1.1.1.1 CDemoApplication
Type: public Class

ackage: Game System P

This class represents the master game system that connects and ticks the various

lication Attribute

components.

DemoAppC s
Attribute Type Notes
 m_hInstance private :

HINSTA
NCE

m_pIObjectSy
stem

private :
ObjectCo
mponent:
:IObjectS

ystem

m_pIGraphics
System

private :
Graphics
Compone
nt::IGrap

 282

hicsSyste
m

m_pIGraphics
3DSystem

private :
Graphics
3DComp
onent::I
Graphics
3DSyste
m

m
tSystem

_pIUserInpu
private :

IUse
rInputSys

UserInpu
tCompon
ent::

tem

m_pINetwork
System pone

 private :
Network
Com
nt::INetw
orkSyste
m

_pIAudioSys

:
:IAudioS

m
tem

private :
AudioCo
mponent

ystem

m_pIAISyste

AICompo

 private :

nent::IAI
System

m

m_pIAI2Syste

private :
AI2Comp

stem

m onent::IA
I2Sy

CDemoApplicati ethods on M
Method Type Notes

CDemoApplic
ation
(HINSTANCE)

 ram: instance [HINSTANCE
- in]

Construction/Destruction

public: pa

~CDemoAppli
cation ()

public
abstract:

 283

 Initialize () public: Create an
void

d connect the necessary
ents. compon

 S
()

tartLooping op. public:
void

Tick each component in a lo

 284

B - 1.2.2.5.2

This
Space using an

Graphic 3

 represents one graphics 3D logical module. It's functionality will draw objects in 3-
 object defined resource.

 - 1.2.2.5.1 ics3

D System

B

Graph DComponent - Implementation

Priv ate Graphics3D System Implementation

+ CGraphics3DProcessorObject
+ CGraphics3DSystem
+ CGraphics3DViewProcessor

Exported Classes

+ Root

Name: Graphics3DComponent - Implementation
Author: Jeff Plummer
Version: 1.0
Created: 8/18/2004 3:54:59 PM
Updated: 11/4/2004 3:44:04 PM

The simple design is NOT presented as T HE DESIGN T O USE for
this architecture. It is merely a simple implementation of this
archi tecture.

re 125 : Graphics3DComponent - Implementation

Figu

 285

B - 1.2.2.2.5.1.1 rt

Expo ed Classes

Singleton
Root

- m_pGraphics3D
- m_pGraphics3D

Sy
Sy

stemImplementation: *CGraphics3DSystem
stemInterface: *IGraphics3DSystem

+ Root(std::string&)
+ ~Root()
+ createGraphics3D nt, int, int, bool) : IGraphics3DSystem*
+ gsGetHWND() : HW

ed Cla
m

 5:
11/4/2004 3:36:30 PM

Name: Export
Author: Jeff Plum
Version: 1.0
Created: 8/18/2004
Updated:

sses
er

09:01 PM

The simple design is NOT present
this archi tecture. It is merely a sim

Sy
ND

stem(IGraphics3DObjectSystem*, i

ed as T HE DESIGN TO USE for
ple implementation of this

archi tecture.

ted Classes

.1 Ro

Figure 126 : Expor

ot B - 1.2.2.2.5.1 .1.1
Type: public Class
 Extends: Singl

ackage: Exported Classes

s the o ported class in the Graphics 3D component. It represents the
e Graphics3D here the game system will connect to the
stem, and requ ics3D system. Root is not part

of the formal architecture, it on point. In the real world it
may be necessary to commun al component (due to
specific library initializations " communications can be done through
the root object directly to the 3D system, rather than through the
rchitectural spec terfa

eton.
P

This class i
initial link to th
Graphics3D sy

nly ex
 system. From
est an interface to the Graph

is an implementation connecti
icate in more ways with the logic
, etc.). These "extra
 instance of the Graphics

a

Root Attributes

ified in ce.

Attribute Type Notes

m_pGraphics3
DSystemImple
mentation

private :
CGraphi
cs3DSyst
em

m_pGraphics3
DSystemInterf

private :
IGraphic
s3DSyste

 286

ace m

Root Methods
Method Type Notes
 Root
(std::string&)

public:

ction

param: resourceConfigFile [
std::string& - inout]

Construction/Destru

 ~Root ()
t:

public
abstrac

createGraphics
3DSystem
(IGraphics3D
ObjectSystem*
, int, int, int,
ool)

public:
IGraphic
s3DSyste
m*

tem [
raphics3DObjectSystem* -

param: fullScreen [bool - in]

b

param: objectSys
IG
inout]
param: xSize [int - in]
param: ySize [int - in]
param: bits [int - in]

 gsGetHWND
()

public:
HWND

 287

B - 1.2.2.2.5.1.2 Private Graphics3D System Implementation

IGraphics3DProcessorObject
CGraphics3DProcessorObject

- m_piGraphics3DProcessableObject: *IGraphics3DProcessableObject
- m_pExternalSceneManager: *Ogre::CExternalSceneManager
- m_pEntity: *Ogre::Enti ty
- m_pExternalSceneNode: *Ogre::CExternalSceneManagerNode

+ CGraphics3DProcessorObject(IGraphics3DProcessableObject*, Ogre::CExternalSceneManager*)
+ ~CGraphics3DProcessorObject()
+ getExternalSceneNode() : Ogre::CExternalSceneManagerNode*
+ processGraphics3DObject(IGraphics3DCamera*, unsigned int) : void
+ release3DProcessorObject() : void

CGraphics3DSystem

- m_pGraphics3DObjectSystem: *IGraphics3DObjectSystem
- m_pOgreRoot: *Ogre::Root
- m_pWindow: *Ogre::RenderWindow
- m_pSceneManagerConnector: *Ogre::CUseExternalSceneManagers
- m_viewportMap: VIEWPORTMAP
- m_avai lableViewportIDs: std::deque<int>
- m_usedViewportIDs: std::deque<int>

+ CGraphics3DSystem(ProgrammingUti l i tiesLibrary::String&)
+ ~CGraphics3DSystem()
+ getSceneManagerConnector() : Ogre::CUseExternalSceneManagers*
+ gs3dConnectObject3DSystem(IGraphics3DObjectSystem*) : void
+ gs3dConfigureAndStartGraphics3DSystem(int, int, int, bool) : void
+ gs3dTickGraphics3DSystem(float) : void
- processView(IGraphics3DView*) : void
- setupResources(ProgrammingUti l i tiesLibrary::String&) : void
- configureOgreWindowSettings() : void
+ getSingletonPtr(void) : CGraphics3DSystem*
+ getSingleton(void) : CGraphics3DSystem&

IGraphics3DViewProcessor
CGraphics3DView Processor

- m_piGraphics3DView: *IGraphics3DView
- m_pOgreViewport: *Ogre::Viewport
- m_pOgreCamera: *Ogre::Camera
- m_pOgreExternalSceneManager: *Ogre::CExternalSceneManager
- m_pViewVisibleNodeList: *Ogre::ExternalNodeList

+ CGraphics3DViewProcessor(IGraphics3DView*, Ogre::Viewport*, Ogre::Camera*, Ogre::CExternalSceneManager*)
+ ~CGraphics3DViewProcessor()
+ release3DViewProcessor() : void
+ processView() : void
- updateOgreCamera(IGraphics3DCamer

Figure 127 : Private Graphics3D System Implementation

B - 1.2.2.2.5.1.2.1.1 CGraphics3DProcessorObject

a*) : void

Type: public Class
 Extends: IGraphics3DProcessorObject. Implements:
IGraphics3DProcessorObject.
Package: Private Graphics3D System Implementation

This is the Graphics3D Object observer that attaches to a game object. It uses the
Graphics3D interface into the game object to get access to the necessary data. The
Graphics3D Processor object will do that calculations treating the game object simply as
a data access point.

CGraphics3DProcessorObject Attributes
Attribute Type Notes

m_piGraphics
3DProcessable
Object

private :
IGraphic
s3DProc
essableO
bject

m_pExternalS
ceneManager

private :
Ogre::C
External
SceneMa
nager

 m_pEntity private :
Ogre::En
tity

 288

eneNode

private :
O
External
SceneMa
nagerNo
de

m_pExternalS gre::C
c

CGraphics3DProcessorObject Methods

Method Type Notes

CGraphics3DP
rocessorObject
(IGraphics3D
ProcessableO
bject*,
Ogre::CExtern
alSceneManag
er*)

public: param: obj [
IGraphics3DProcessableObject*
- inout]
param:
pSceneManagerConnector [
Ogre::CExternalSceneManager*
- inout]

Construction/Destruction

~CGraphics3D
ProcessorObje
ct ()

public
abstract:

getExternalSce
neNode ()

public:
Ogre::C
External
SceneMa
nagerNo
de*

processGraphi
cs3DObject
(IGraphics3D
Camera*,
unsigned int)

public:
void

param: camera [
IGraphics3DCamera* - inout]
param: ProcessFlags [unsigned
int - in]

release3DProc
essorObject ()

public
abstract:
void

Only required in C++ because
there is no memory management

B - 1.2.2.2.5.1.2.1.2 CGraphics3DSystem
Type: public Class
Package: Private Graphics3D System Implementation

 289

This class represents the implementation of the Graphics3D system. It implements the
IGraphics3DSystem interface, and will be responsible for performing 3D Graphics

perations on the objects it receives from the Object component. o

CGraphics3DSystem Attributes
Attribute Type Notes

m_pGraphics3
DObjectSyste
m

private :
IGraphic
s3DObje
ctSystem

 m_pOgreRoot private :
Ogre::Ro
ot

 m_pWindow private :
Ogre::Re
nderWin
dow

m_pSceneMan
agerConnector

private :
Ogre::C
UseExter
nalScene
M r
s

anage

m_viewportM
ap

private :
VIEWPO
RTMAP

leVi

ewportIDs

private :

e<int>

m_availab std::dequ

_usedViewp

rtIDs

private :
std::dequ
e<int>

m
o

CGraphics3DSy ethodstem M s
Method Type Notes

CGraphics3DS
ystem

UtilitiesLibrar
y::String&)

ProgrammingUtilitiesLibrary::St
ring& - inout]

Construction/Destruction

(Programming

public: param: resourceConfigFile [

 public

 290

~CGraphi abstract: cs3D
 System ()

getSceneMana

public:
Ogre::C

gerConnector
()

UseExter
nalScene
Manager
s*

gs3dConnectO
bject3DSyste
m
(IGraphics3D

public
abstract:
void

param: objectSystem [
IGraphics3DO

IGraphic
ObjectSystem*

bjectSystem* -
inout]

s3DSystem

)

g
AndStartGrap
hics3DSyst
(int, int, int,
bool)

s3dConfigure

em

abstract:
void

 int - in]

am: fullScreen [bool - in]

public param: xSize [
param: ySize [int - in]
param: bits [int - in]
par

gs3dTickGrap
ics3DSystem

public
abstract:
void

param: tDiff [float - in]

h
(float)
 processView
(IGraphics3D
View*)

private:
void

param: view [
IGraphics3DView* - inout]

setupResource
s
(Programming

tilitiesLibrar
y::String&)

 [
rogrammingUtilitiesLibrary::St

ring& - inout]

private:
void

param: resourceConfigFile
P

U

configureOgre
WindowSettin
gs ()

private:
void

getSingletonPt
r (void)

public
static:
CGraphi
cs3DSyst
em*

param: prm1 [void - in]

Singleton Stuff

 getSingleton
(void)

public
static:

param: prm1 [void - in]

 291

CGraphi
cs3DSyst
em&

B - 1.2.2.2.5.1.2.1.3 CGraphics3DViewProcessor
Type: pu ssblic Cla
 Extends: IGraphics3DViewProcessor.

raphics3DViewProcessor.
Package: Private Graphics3D System Implementation

This class attaches to a vie w (i.e. uses the view interface to

jects ttached to the objects).

 Implements:
IG

w and processes the vie
request ob and works with the object processors a

CGraphics3DViewProcessor Attributes
Attribute Type Notes

m_piGraphics

private :
IGraphic

3DView s3DView

m
port

_pOgreView i
private :
Ogre::V
ewport

m_pOgreCam
ra mera

e

private :
Ogre::Ca

m_pOgreExter
nalSceneMana
ger

private :
Ogre::C
External
SceneMa
nager

_pViewVisi

leNodeList

private :
Ogre::Ex
ternalNo
deList

m
b

CGraphics3DVie sor ethods wProces M
Method Type Notes

CGraphics3D

iewProcessor

param: pView [
IGraphics3DView* - inout]

ram: pOgreViewport [
Ogre::Viewport* - inout]

V
(IGraphics3D
View*,

public:

pa

param: pOgreCamera [

 292

Ogre::Viewpo
*,

Ogre::CExtern
lSceneManag

Ogre::Camera* - inout]
ram: pOgreExtSceneMgr [

Ogre::CExternalSceneManager*
- inout]

onstruction/Destruction

rt
Ogre::Camera
*,

a
er*)

pa

C

~CGraphics3D

iewProcessor
()

act:
 public

abstr
V

release3DVie

public
abstract:

wProcessor () void
 processView public:
() void

updateOgreCa

era

private:
void

param: cam [
IGraphics3DCamera* - inout]
 m

(IGraphics3D
Camera*)

 293

B - 1.2.2.5.2 Graphics3DComponent - Interfaces

Shared Data Types

+ iRect
+ point2d
+ point3f
+ point4f

Interfaces the Obj ect System can use to communicate w ith the Graphics3D System

+ IGraphics3DProcessorObject
+ IGraphics3DSystem
+ IGraphics3DViewProcessor

Interfaces The Obj ect System Implements

+ IGraphics3DCamera
+ IGraphics3DCapableObject
+ IGraphics3DObjectSystem
+ IGraphics3DProcessableObject
+ IGraphics3DSceneManager
+ IGraphics3DView

Name: Graphics
Author: Jeff Plu
Version: 1.0

3DComponent - Interfaces
mmer The simple design is N

this archi tecture. It is m
Created: 8/18/2004 3:50:57 PM
Updated: 11/4/2004 4:14:49 PM

OT presented as THE DESIGN TO USE for
erely a simple implementation of this

re 128 : Graphics3DComponent - Interfaces

architecture.

Figu

 294

B - 1.2.2.2.5.2.1 Interfaces the Object System can use to communicate with the
D Syst

o nterfaces that are made available to the game system to use in
mun the Graphics3D System.

Graphics3 em

This diagram sh
order to com

ws the i
icate with

«interface»
IGraphics3DProcessorObject

+ «pur ocessorObject() : voide» release3DPr

«interface»
IGraphics3DSystem

+ «pure» gs3dConnectObject3DSystem(IGraphics3DObjectSystem*) : void
+ «pure» gs3dConfigureAndStartGraphics3DSystem(int, int, int, bool) : void
+ «pure» gs3dTickGraphics3DSystem(float) : void

«interface»
IGraphics3DViewProcessor

+ «pure» release3DViewProcessor() : void

 the Object System can use to communicate wi th the Graphics3D System
ummer

Created: 10/11/2004 5:28:16 PM
Updated: 11/5/2004 3:12:14 PM

Name: Interfaces
Author: Jeff Pl
Version: 1.0

T he simple design is NOT presented as THE DESIGN TO USE for
this archi tecture. It is merely a simple implementation of this
architecture.

Figure 129 : Interfaces the Object System can use to communicate with the

Graphics3D System

bject B - 1.2.2.2.5.2.1.1.1 IGraphics3DProcessorO
Type: public abstract «interface» Interface

ackage: Interfaces the Object System can use to comP
y

municate with the Graphics3D
stem

e system can use to access the domain-specific processor that
 ample is empty, showing that game objects don't

y requi n-s unctionality access.

IGraphics3DProcessorObject Interfaces

S

This is the interface the gam

d to a ga ject.is attache
necessaril

me ob This ex
cific fre domai pe

Method Type Notes

release3DProc
ssorObject ()

Only required in C++ because
there is no memory management

«pure»
public

: e abstract
void

 295

B - 1.2.2.2.5.2.1.1.2 IGraphics3DSystem
public abstract «interface» Interface Type:

Package: Interfaces th
Syste

This interface is

e Object System can use to communicate with the Graphics3D
m

 the architectural connection from the game system to the Graphics3D
omponent. One of the major goals of this architecture is to limit interaction from

 G 3D component. So this interface will provide only the
ity to s raphics3D system and provide the Graphics3D system with

the means to communicate back to the data. From that point on most communication will
originate from the Graphics3D system back to the data.

IGraphics3DSystem Interfaces

c
outside into the
functional

raphics
etup the G

Method Type Notes

gs3dConnectO
bject3DSyste

tSystem*
)

ract:

param: objectSystem [
IGraphics3DObjectSystem* -
inout]

Use this method to connect an
Graphics3D Capable Object
Management System to the
Graphics3D Component.

«pure»
public
abst
void m

(IGraphics3D
Objec

s3dConfigure

bool)

:

param: xSize [int - in]
ram: ySize [int - in]

param: bits [int - in]
param: fullScreen [bool - in]

Configuration of the gaphics
engine.

«pure»
public
abstract
void

pag
AndStartGrap
hics3DSystem
(int, int, int,

gs3dTickGrap
hics3DSystem

«pure»
public
abstract:

param: tDiff [float - in]

ck the
hat it

st and process 3D
(float) void Graphics3D system, so t

will reque

Use this method to Ti

Graphical objects.

B - 1.2.2.2.5.2.1.1.3 IGraphics3DViewProcessor
public abstract «interface» InterfaceType:

 296

Package: In e Object System can use to communicate with the Graphics3D

phics3DViewProcessor Interfaces

terfaces th
System

IGra
Method Type Notes

release3DVie
wProcessor () ract:

void

nly required in C++ because
there is no memory management

«pure»
public
abst

O

 297

B - 1.2.2.2.5.2.2 Interfaces The Object System Implements

o nterfaces the object system will implement in order to be usable
s3

This diagram sh
by the Graphic

ws the i
D System.

«interface»
IGraphics3DCamera

+ «pure» gs3dGet3DCameraLocation() : point3f&
+ «pure» gs3dGet3DCameraLookAt() : point3f&

«interface»
IGraphics3DCapableObject

+ doNothing() : void

«interfac
IGraphics3DOb

e»
jectSystem

+ s() : IGraphics3DViewIterator*«pure» gs3dGetGraphicsView

«interface»
IGraphics3DProcessableObject

+ «pure» gs3dGetGraphics3DProcessorObject() : IGraphics3DProcessorObject*
+ «pure» gs3dAssignGraphics3DProcessorObject(IGraphics3DProcessorObject*) : void
+ «pure» gs3dGetGraphic3DInterfacesImplemented() : unsigned int
+ «pure» gs3dGetGraphics3DResources() : IStringIterator*
+ «pure» gs3dGet3DObjectLocation() : point3f&
+ «pure» gs3dGet3DObjectOrientationAsQuaternion() : point4f&

«interface»
IGraphics3DSceneM anager

+ «pure» gs3dGetVisibleGraphics3DObjects() : IGraphics3DObjectIterator*

«int
IGrap

erface»
hics3DView

+ essor() : IGraphics3DViewProcessor*
+ wProcessor(IGraphics3DViewProcessor*) : void
+ «pure» gs3dGet3DSceneCamera() : IGraphics3DCamera*
+ «pure» gs3dGetViewRect() : iRect*
+ «pure» gs3dGetSceneManager() : IGraphics3DSceneManager*
+ «pure» gs3dGetSubViews() : IGraphics3DViewIterator*
+ «pure» gs3dGetEnabledInterfaceFlagsForView() : unsigned int

N ct System Im plem ents
A
V
C 39 PM
U 6 PM

«pure» gs3dGetGraphics3DViewProc
«pure» gs3dAssignGraphics3DVie

uthor: Jeff Plummer
ersion: 1.0
reated: 10/11/2004 5:27:
pdated: 11/8/2004 3:46:2

ame: Interfaces T he Obje

Figure 130 : Interfaces The Object System Implements

B - 1.2.2.2.5.2.2.1.1 IGraphics3DCamera
Type: public abstract «interface» Interface
Package: Interfaces The Object System Implements

IGraphics3DCamera Interfaces
Method Type Notes

gs3dGet3DCa
meraLocation
()

«pure»
public
abstract:
point3f&

gs3dGet3DCa
meraLookAt ()

«pure»
public
abstract:
point3f&

B - 1.2.2.2.5.2.2.1.2 IGraphics3DCapableObject
Type: public abstract «interface» Interface
Package: Interfaces The Object System Implements

 298

IGraphics3DCapableObject Interfaces
Method Type Notes
 doNothing () public

abstract:
void

B - 1.2.2.2.5.2.2.1.3 IGraphics3DObjectSystem
Type: public abstract «interface» Interface
Package: Interfaces The Object System Implements

IGraphics3DObjectSystem Interfaces
Method Type Notes

gs3dGetGraph
icsViews ()

«pure»
public
abstract:
IGraphic
s3DView
Iterator*

B - 1.2.2.2.5.2.2.1.4 IGraphics3DProcessableObject
Type: public abstract «interface» Interface
 Extends: IGraphics3DCapableObject.
Package: Interfaces The Object System Implements

IGraphics3DProcessableObject Interfaces
Method Type Notes

gs3dGetGraph
ics3DProcesso
rObject ()

«pure»
public
abstract:
IGraphic
s3DProc
essorObj
ect*

 299

gs3dAssignGr

«pure»
public IGraphics3DP

aphics3DProce abstract: inout]
ssorObject
(IGraphics3D
ProcessorObje
ct*)

void

param: procObj [
rocessorObject* -

gs3dGetGraph
ic3DInterfaces

plemented

public
abstract:
unsigned
int

 «pure»

Im
()
 «p
gs3dGetGraph

e
s ()

ure»

rator*

public

ics3DResourc abstract:
IStringIte

gs3dGet3DObj
ectLocation ()

public
abstract:
point3f&

«pure»

gs3dGet3DObj
ectOrientation
AsQuaternion
()

«pure»

abstract:
point4f&

public

.2.2 raphics3DSceneManager

2.5 .1.5 IG
public abstrac

B - 1.2.2.
t «interface» Interface Type:

Package: Interfaces The Object System Implements

neManager erfaces

IGraphics3DSce Int
Method Type Notes

gs3dGetVisibl

O
public

bje
ctIterator
*

eGraphics3D
bjects ()

«pure»

abstract:
IGraphic
s3DO

 300

5.2.2 IGB - 1.2.2.2. .1.6 raphics3DView
Type: pu c «interface» Interfaceblic abstra t
Package: Interfaces The Object System Implements

IGraphics3DView Interfaces
Method Type Notes

gs3dGetGraph
ics3DViewPro
cessor ()

«pure»
public
abstract:
IGraphic

s3DView
Processo
r*

gs3dAssignGr
aphics3DView
Processor
(IGraphics3D
ViewProcessor
*)

act:
raphics3DViewProcessor* -

inout]

«pure»
public
abstr

param: viewProc [
IG

void

gs3dGet3DSce
neCamera ()

«pure»
public
abstract:
IGraphic
s3DCam
era*

gs3dGetV
Rect ()

iew
«pure»
public
abstract:

iRect*

gs3dGetScene

r ()
ic

abstract:
IGraphic
s3DScen
eManage

«pure»
publ

Manage

r*

gs3dGetSubVi
ews ()

ic
abstract:

«pure»
publ

 301

IGraphi
s3DView
Itera

c

tor*

gs3dGetEnabl
edInterfaceFla
gsForView ()

«pure»
public
abstract:

unsigned
int

 302

B - 1.2.2.6.2 Graphics 2D System

s one graphics ctionality will draw objects in 2-
g an object defined resource.

 Graphics Component - Implementation

age contains an exa cs system. The
n is not meant to show how to implement an graphics engine, but rather

 graphics compon e proposed architecture.

This represent
Space usin

2D logical module. It's fun

B - 1.2.2.6.1

This pack
implementatio

mple implementation of the Graphi

show how a

ent could be connected using th

Exported Classes

+ Root

Priv ate Graphics System Implementation

+ CGraphicsProcessorObject
+ CGraphicsSystem
+ CGraphicsViewProcessor
+ Resource Management

 1 : Graphics Component - Implementation

Figure 31

 303

B - 1.2.2.2.6.1.1 Exported Classes

Singleton
Root

- m_pGrap
- m_pGr

hicsS mInterface: *IGraphicsSystem
aphicsSystemImplementation: *CGraphicsSystem

yste

+ Root(std::string

ics nt, bool) : IGraphicsSystem*
+ gsGetHWND() : ND

s

B - 1.2.2.2.6.1.1.1.1 Ro

&)
+ ~Root()
+ createGraph System(IGraphicsObjectSystem*, int, int, i

 HW

Figure 132 : Exported Classe

ot
Type: public Class
 Extends: Singl
Package: Exported Clas

This class is the only exporte t. It represents the initial
link to the Audio system. Fro nect to the Graphics
system, and request an interfa is not part of the formal
architecture, it is an impleme al world it may be
necessary to communicate in nent (due to specific
library initializations, etc.). These "extra" communications can be done through the root
object directly to the instance n through the
architectural specified interfa

Jeff Plu
 1.0

@updated 11-Feb-2004 07:5

Root Attributes

eton.
ses

d class in the Graphics componen
m here the game system will con
ce to the Graphics system. Root

ntation connection point. In the re
 more ways with the logical compo

 of the Graphics system, rather tha
ce.

@author
@version

mmer

9:15 PM

Attribute Type Notes

m_pGraphicsS
ystemInterface

private :
IGraphic
sSystem

m_pGraphicsS
ystemImpleme
ntation

private :
CGraphi
csSystem

 304

Root Methods
Method Type Notes
 Root
(std::string&)

public:

e

param: resourceConfigFile [
std::string& - inout]

Constructor - Create an instanc
of the Graphics system.
@param configFile

 ~Root () public
abstract:

Destructor - Destroy the instance
of the Graphics System.

System
bj

nt,
ool)

public:
IGraphic
sSystem*

t

aram: ySize [int - in]
param: bits [int - in]

onnect the object system to the

m A

IGraphicsObjectSystem

omponent will use this interface

of
e

or run

param: objectSystem [
IGraphicsObjectSystem* - inoucreateGraphics
]

(IGraphicsO
ectSystem*,
int, int, i

param: xSize [int - in]
p

param: fullScreen [bool - in] b

C
Graphics system and return an
interface to Graphics system
@param objectSyste
pointer to an object that
implements the

interface. The Graphics
c
to communicate to the data
section of the game system.
@param xSize The number
pixels in the X direction of th
render window.
@param ySize The number of
pixels in the Y direction of the
render window.
@param bits The number of
bits per pixel data format.
@param fullScreen Make the
render window full screen
in a window.

 gsGetHWND
()

public:
HWND

ion Implementation specific funct
that returns a handle to the
window. Windows(tm)
implementation specific.

 305

B - 1.2.2.2.6.1.2 Private

 Graphics System Implementation

CGraphicsProcessorObj ect

- m_pGraphicsObject: *IProcess
- m_pGraphicsResourceObject: *
- m_vProcessorFunctions: std::vec
- m_GraphicsResourceName: Pr
- m_bIsConnectedToObject: bool
- m_nEnabledGaphicsInterfaces:
- m_i2DGraphicsObject: *I2DGr
- m_i2DSpri teGraphicsObject: *I
- m_ScreenPosi tion: point2f

esource: poin
fsetInResource: point2d
nt

ace

ableGraphicsObject
CGraphicsResource
tor<ProcessorFunction>

ogrammingUti l i tiesLibrary::String

 unsigned int
aphicsObject
2DSpri teGraphicsObject

t2d- m_ImageOffsetInR
- m_CurrentImageOf
- m_nImageWidth: i
- m_nImageHeight: int
- m_pScreenSurface: *SDL_Surf

- releaseProcessorObject() : void
+ CGraphicsProcessorObject()
+ CGraphicsProcessorObject(IProc eGraphicsObject*)

orObject()
ject(IGraphic
t() : void

h a*, unsigned int) : void
- process2DSpri teGraphicsObject(IGraphicsCamera*, unsigned int) : void
+ setScreenSurface(SDL_Surface*) : void

essabl
+ ~CGraphicsProcess
+ processGraphicsOb
- drawGraphicsObjec
- registerGraphicsObjectInterface
- registerAs2DGraphicsObject() : v
- registerAs2DSpriteGraphicsObj
- process2DGraphicsObject(IGrap

sCamera*, unsigned int) : void

s() : void
oid

ect() : void
icsCamer

CGraphicsSystem

- m_pObjectSystem: *IGraphicsObjec
- m_pScreen: *SDL_Surface
- m_pGraphicsResourceManager: *
- m_bUseFul lScreen: bool
- m_nxSize: int
- m_nySize: int
- m_nbi ts: int

tSystem

CGraphicsResourceManager

+ CGraphicsSystem(Progr
+ ~CGraphicsSystem()

ammingUti l i tiesLibrary::String&)

+ gsGetHWND() : HWND
+ gsConnectObjectSystem(IGraphicsObjectSystem*) : void
+ gsConfigureAndStartGraphicsSystem(int, int, int, bool) : void
+ gsTickGraphicsSystem(float) : void
- setupResources(ProgrammingUti l i tiesLibrary::String&) : void

IGraphicsViewProcessor
rocessorCGraphicsView P

- m_piGraphicsView: *IGraphics
- m_pScreen: *SDL_Surface

View

+ CGraphicsViewProcessor(IGraphicsView*, SDL_Surface*)
+ ~CGraphicsViewProcessor()
+ releaseViewProcessor() : void
+ processView() : void

hics System

10:46 PM
55:30 PM

ementation

.1.1 CGraphicsProcessorObject

Name: Private Grap
Author: Jeff Plummer
Version: 1.0
Created: 8/18/2004 5:
Updated: 11/8/2004 2:

 Implementation

Figure 133 : Private Graphics System Impl

B - 1.2.2.2.6.1.2
pu ssType: blic Cla

 Im ents: I
Package: Private Graphics System Implementation

CGraphicsProcessorObject Attributes

GraphicsProcessorObject. plem

Attribute Type Notes

m_pGraphics
Object

s

hicsObje

private :
IProces
ableGrap

ct

m_pGraphicsR

t
CGraphi

resourceObjec

private :

csResou
ce

_vProcessor

private :

c
essorFun

m
Functions

std::vect
or<Pro

 306

ction>

m_GraphicsRe

 :
Program

ili

g

private

mingUt
tiesLibra
ry::Strin

sourceName

m_bIsConnect
edToObject

private :
bool

G

nterfac
s

private :

unsigned
int

m_nEnabled
aphicsI
e

m_i2DGraphic

 :
I2DGrap

esObject

private

hicsObj
ct

m_i2DSpriteG
raphicsObject

private :
I2DSprit
eGraphic

sObject

m_ScreenPosit

te :
point2f

ering a
D Image

priva Variables used for rend
2

ion

m_ImageOffse

te :
point2d

tInResource

priva

m_CurrentIma

es
ource

:

geOffsetInR

private
point2d

id

m_nImageW
th

private :
int

m_nImageHei

 private :
int

ght

m_pScreenSur
face

ur

 private
static :
SDL_S
face

 307

CGraphicsProce ect MssorObj ethods
Method Type Notes

ct ()

raphicsProcessorObject
releaseProcess
orObje

private IG
abstract:
void

CGraphicsPro

 n

cessorObject ()

public: Construction/Destructio

CGraphicsPro

ect

ct*)

c:
rocessableGraphicsObject* -

cessorObj
(IProcessable
GraphicsObje

publi param: pObject [
IP
inout]

~CGraphicsPr

 ocessorObject
()

public
abstract:

processGraphi
csObject
(IGraphicsCa

unsigned int)

public:
void raphicsCamera* - inout]

param: camera [
IG
param: ProcessFlags [unsigned
int - in]

mera*,

s

 ()

 private:
void drawGraphic

Object

terf
aces ()

private:
registerGraphi
csObjectIn

void

private:
void

registerAs2DG
raphicsObject
()

registerAs2DS

ct ()

 private:
void

priteGraphics
Obje

process2DGra
phicsObject
(IGraphicsCa
mera*,
unsigned int)

private:
void

param: camera [
IGraphicsCamera* - inout]
param: InterfaceEnabledCode [
unsigned int - in]

 308

process2DSpri

sCa
mera*,
unsigned int)

private:
void

ram: InterfaceEnabledCode [
unsigned int - in]

param: camera [
IGraphicsCamera* - inout]
pa

teGraphicsObj
ect
(IGraphic

setScreenSurfa

(SDL_Surface
*)

public:
void

Variables used for rendering a
2D sprite

param: screen [SDL_Surface* -
inout]
 ce

.6.1.2 CGB - 1.2.2.2 .1.2 raphicsSystem
Type: public Class
 Im ents: IGraphicsSystem.

r phics System Implementation

This class represents the implementation of the Graphics system. It implements the

stem e, a to communicate with the
cs compon

@author Jeff Plu r
0

e 3

em

plem
Package: P ivate Gra

IGraphicsSy
Graphi

 interfac
ent.

mme

nd allows the game system

@version 1.
@updated 11-F b-2004 08: 3:29 PM

CGraphicsSyst Attributes
Attribute Type Notes

m_pObjectSys
tem

ic

sObjectS
ystem

 the
bject system. Using this

ill

private :
IGraph

Pointer to the interface to
o
interface the object system w
request graphical objects it
should draw, etc.

 m_pScreen private :
SDL_Sur ace for
face

Implementation Specifc: A
pointer to an SDL surf
drawing.

m_pGraphicsR
esourceManag

i
r
g

he graphics resource manager
object that is responsible for
loading and storing in memory

er

private :
CGraph
csResou
ceMana
er

T

the graphics resources.

private
bool

:
indowed.

Graphical view is fullscreen or
m_bUseFullSc w

 309

reen
 m_nxSize : Screen size in the X direction. private

int
 m_nySize

int
Screen size in the Y direction. private :

 m_nbits private :
int

Number of bits per pixel.

CGraphicsSystem Methods
Method Type Notes

CGraphicsSyst

ming
r

public: param: configFile [
ProgrammingUtilitiesLibrary::St
ring& - inout]

onstructor
param configFile

em
(Program
UtilitiesLibra

C
@y::String&)

~CGraphicsSy
stem ()

Destructor public

abstract:

 gsGetHWND
()

plementation specific***
Returns a handle to the Windows
HWND.

public:
HWND

Im

ectSystem
(IGraphicsObj
ectSystem*)

param: objectSystem [

t

The architectural interface

ject system.
@param objectSystem

gsConnectObj
public
abstract:
void

IGraphicsObjectSystem* - inou
]

implementation method that
connects the graphics system to
the ob

gsConfigureA
ndStartGraphi
csSystem (int,

:
ram: xSize [int - in]

param: ySize [int - in]
param: bits [int - in]
param: fullScreen [bool - in]

The architectural interface
implementation method that
configures the graphics system

ith regard to dimensions and
pixel depth.
@param xSize
@param ySize

int, int, bool)

public
abstract
void

pa

w

@param bits

 310

@param fullScreen

gsTickGraphic
sSystem

public
abstract:
void

param: tDiff [float - in]

implementation method that tells
aphics system to iterate

cute graphics operations
on the objects given to it from
the object system.

(float)
the gr

The architectural interface

and exe

setupResource void ProgrammingUtiliti
s
(Programming
UtilitiesLibrar
y::String&)

private: param: resourceConfigFile [
esLibrary::St

 inout]

Implementation specific***
Method is used to further

nfigure the graphics system.
@param configFile

ring& -

co

cessor

B - 1.2.2.2.6.1.2.1.3 CGraphicsViewPro
pu assblic ClType:

 Im IGraphicsViewProcessor.
Private Graphics System Implementation

P or At

Package:

plements:

CGraphicsView rocess tributes
Attribute Type Notes

m_piGraphics
View

:

w

private
IGraphic
sVie

 m_pScreen private
SDL_Sur
face

:

CGraphicsViewProcessor Methods
Method Type Notes

CGraphicsVie

(IGraphicsVie
w*,

param: pView [IGraphicsView*
- inout]

ram: pScreen [SDL_Surface*
- inout]

public:

wProcessor pa

 311

SDL_Surface*
)

Construction/Destruction

~CGraphicsVi
ewProcessor ()

public
abstract:

releaseViewPr
ocessor ()

public
abstract:
void

 processView
()

public:
void

 312

B - 1.2.2.6.2 Graphics Component - Interfaces

Interfaces Obj ect System Can Use To Communicate With Graphics System

+ IGraphicsProcessorObject
+ IGraphicsSystem

Interfaces The Obj ect System Implements

+ I2DGraphicsCamera
+ I2DGraphicsObject
+ I2DSpri teGraphicsObject
+ IGraphicsCamera
+ IGraphicsCapableObject
+ IGraphicsObjectIterator
+ IGraphicsObjectSystem
+ IGraphicsSceneManager
+ IGraphicsView
+ IGraphicsView Iterator
+ IProcessableGraphicsObject

Shared Data Types

- <anonymous>
- <anonymous>
+ ImageType
+ iRect
+ point2d
+ point2f

cs Component - Interfaces
ummer

Version: 1.0

Name: Graphi
Author: Jeff Pl

Created: 8/18/2004 5:07:32 PM
Updated: 11/4/2004 4:11:47 PM

The simple design is NOT presented as THE DESIGN TO USE for
this archi tecture. It is merely a simple implementation of this

Figure 134 : Graphics Component - Interfaces

architecture.

 313

B - 1.2.2.2.6.2.1 Interfaces Object System Can Use To Communicate With
Graphics System

This diagram shows the interfaces that are made available to the game system to use in
order to communicate with the Graphics2D System.

«interface»
IGraphicsSystem

+ «pure» gsConnectObjectSystem(IGraphicsObjectSystem*) : void
+ «pure» gsConfigureAndStartGraphicsSystem(int, int, int, bool) : void
+ «pure» gsTickGraphicsSystem(float) : void

«interface»
IGraphicsProcessorObject

+ «pure» releaseProcessorObject() : void

Figure 135 : Interfaces The Graphics System Implements

B - 1.2.2.2.6.2.1.1.1 IGraphicsProcessorObject
public abstract «interface» Type: Interface

Package: Interfaces Object System Can Use To Communicate With Graphics
ystem

r icsProc je ces

S

IG aph essorOb ct Interfa
Method Type Notes

releaseProcess
orObject ()

e»

abstract

Only re
 is anagement

«pur
public

quired in C++ because
 no memory m

:
there

void

B - 1.2.2.2.6.2.1.1.2 IGraphicsSystem

 314

Type: public abstract «interface» Interface
Package: Interfaces Object System Can se To Communicate With Graphics
System

This interface is the architectural connection from the game system to the Graphics
component
outside into nality

 setup the Graphics system and provide the Graphics system with the means to
ommunicate back to the data. From that point on most communication will originate

author Jeff Plummer
ve
up ted 12-F 0 M

st fa

U

. One of the major goals of this architecture is to limit interaction from
 the Graphics component. So this interface will provide only the functio

to
c
from the Graphics system back to the data.
@
@
@

rsion 1.0
da eb-2004 8:32:46 P

IGraphicsSy em Inter ces
Method Type Notes

j
ectS
(IGraphicsObj

S

ure»
lic

abstract
void

param: m [
h ut

chite
used to
component to the object system.

«p objectSyste
gsConnectOb

ystem

ect ystem*)

pub
:

IGrap
]

icsObjectSystem* - ino

Ar ctural interface method
 connect the Graphics

gsConfigureA

i
csSy ,
int,

«pure»
public

ract
void

param: n]
param: ySize [int - in]

:
aram:

ndStartGraph
stem (int

int, bool)

abst : param
p

 xSize [int - i

 bits [int - in]
 fullScreen [bool - in]

gsTickGraphic
sSys

a

«pure»
public
abstract:

param: tDiff [float - in]

tem
(flo t) void

 315

B - 1.2.2.2.6.2.2 Interfaces The Object ystem Implements

This diagram shows the interfaces the object system will implement in order to be usable
by the Graphics2D System.

S

«interface»
IGraphicsObjectSystem

+ «pure» gsGetGraphicsViews() : IGraphicsViewIterator*

«interface»
IGraphicsView

+ «pure» gsGetGraphicsViewProcessor() : IGraphicsViewProcessor*
+ «pure» gsGetViewRect() : iRect*
+ «pure» gsAssignGraphicsViewProcessor(IGraphicsViewProcessor*) : void
+ «pure» gsGetSceneManager() : IGraphicsSceneManager*
+ «pure» gsGetSceneCamera() : IGraphicsCamera*
+ «pure» gsGetSubViews() : IGraphicsViewIterator*
+ «pure» gsGetEnabledInterfaceFlagsForView() : unsigned int

«interface»
IGraphicsSceneManager

+ «pure» gsGetGraphicsObjects() : IGraphicsObjectIterator*

«interface»

T:class

IIterator

+ IIterator()
+ «pure» fi rstEntry() : T
+ «pure» isDone() : bool
+ «pure» lastEntry() : T
+ «pure» numEntries() : int
+ «pure» resetIterator() : void
+ «pure» currentEntry() : T
+ «pure» i terateForward() : void

«interface»
IGraphicsViewIterator

+ IIterator()
+ fi rstEntry() : T
+ previousEntry() : T
+ nextEntry() : T
+ lastEntry() : T
+ numEntries() : int

«interface»
IGraphicsObjectIterator

+ IIterator()
+ fi rstEntry() : T
+ previousEntry() : T
+ nextEntry() : T
+ lastEntry() : T
+ numEntries() : int

«interface»
I2DGraphicsCamera

+ «pure» gsGet2DCameraLocation() : point2f&

«interface»
I2DGraphicsObject

+ «pure» gsGetWorldPosition() : point2f&
+ «pure» gsGetImageOffsetInResource() : point2d&
+ «pure» gsGetImageHeight() : int
+ «pure» gsGetImageWidth() : int

«interface»
I2DSpriteGraphicsObject

+ «pure» gsCurrentImageOffsetInResource() : point2d&

«interface»
IGraphicsCamera

«interface»
IGraphicsCapableObject

+ doNothing() : void

«interface»
IProcessableGraphicsObject

+ «pure» gsGetGraphicsProcessorObject() : IGraphicsProcessorObject*
+ «pure» gsAssignGraphicsProcessorObject(IGraphicsProcessorObject*) : void
+ «pure» gsGetGraphicInterfacesImplemented() : unsigned int
+ «pure» gsGetGraphicsResources() : IStringIterator*
+ «pure» gsGetResources() : std::vector<std::string*>*

Name: Interfaces T he Object System Must Implement
Author: Jeff Plummer
Version: 1.0
Created: 6/18/2004 2:09:56 PM
Updated: 11/5/2004 3:20:56 PM

ces The t
ummer

004 2:0
004 3:2

Name: Interfa
Author: Jeff Pl
Version: 1.0
Created: 6/18/2
Updated: 11/5/2

 Object System Must Implemen

9:56 PM
0:56 PM

«real ize»«real ize»

re 1 f ust Implement

 .2 h

Figu 36 : Inter aces The Object System M

B - 1.2.2.2.6 .2.1.1 I2DGrap icsCamera

 316

Typ public abs ere: tract «int face» Interface
 Extends: IGraphicsCamera.

ackage: Interfaces The Object System Implements

I2DGraphicsCamera Interfaces

P

Method Type Notes

gsGet2DCam
raLocation (

point2f&

e
)

public
abstract:

«pure»

B - .2 Graph ect 1.2.2.2.6 .2.1.2 I2D icsObj
p bs erface» InterfaceTy e: public a tract «int

 Extends: IGraphicsCapableObject.
s bject

I2DGraphicsObject Interfaces

Package: Interface The O System Implements

Method Type Notes

gsG o
sitio

»

stract:
point2f&

etWorldP
n ()

«pure
public
ab

gsGetImageOf
fsetInResource
()

lic
abstract
point2d&

«pure»
pub

:

gsG e
ight

«pure»
public
abstract:

etImageH
 ()

int

gsG i
dth

ure»
public
abstract:
int

etImageW
()

«p

B - 1.2.2.2.6.2.2.1.3 I2DSpriteGraphicsObject

 317

Type: public abstract «interface» Interface
hicsCapableObject.

ckage: Interfaces The Object System Implements

I2DSpriteGraphicsObject Interfaces

 Extends: IGrap
Pa

Method Type Notes

gsCurrentImag
eOffsetInReso
urce ()

«pure»
public
abstract:
point2d&

B - 1.2.2.2.6.2.2.1.4 IGraphicsCamera
Type: public abstract «interface» Interface
Package: Interfaces The Object System Implements

B - 1.2.2.2.6.2.2.1.5 IGraphicsCapableObject
Type: public abstract «interface» Interface
Package: Interfaces The Object System Implements

IGraphicsCapableObject Interfaces
Method Type Notes
 doNothi pu

abstract:
void

ng () blic

B - .2 cs Iterator .2.1.6 IGraphi Object1.2.2.2.6
Type: Interfacepublic abstract «interface»

ents: or
s ct

IGr je

Pac

kage:

Implem
Interface

IIterat
The Obje

.
 System Implements

aphicsOb ctIterator Interfaces

 318

Method Type Notes
 IIte public: rator ()
 firstEntry () public

abstract:

T
 previousEntry
()

lic
ct

T

pub
abstra :

 nextEntry () public
abstract:
T

 lastEntry () public
abstract:
T

 numEntries () public
a
int

bstract:

B - 1.2.2.2.6.2.2.1.7 IGraphicsObjectSystem
yp bs ter nterfacetract «in face» IT e: public a

c e: s ct System Implements

s e hi l con stem responsible for
managing objects capable of Graphi ent. Using this interface

 c ent w es cts and perform the
r r ope t

@au Plummer
@version 1.0
@updated 05-Mar-2004 09:31:42 PM

IGraphicsObjectSystem Interfaces

Pa

kag Interface The Obje

Thi interfac is the arc

ompo

tectura nection from the object sy
cs to the Graphics compon
t Graphics capable objthe Graphics

app
n

aphics
ill requ

rations on
e

hem.

opriate G
thor Jeff

Method Type Notes

gsGetGraphic

s ()
s

View

t:

aphic
sViewIter
ator*

 «pure»
public
abstrac
IGr

 .2 hicsB - 1.2.2.2.6 .2.1.8 IGrap SceneManager

 319

Typ c abstract «interface» Interface
 System Implements

e: publi
Pac Interfaces The Object

IGraphicsSceneManager Interfaces

kage:

Method Type Notes

cs
Obj

«pure»
lic

abstract
IGraphi
sObjectIt
erator*

gsGetGraphi

ects ()
pub

:
c

B - 1.2.2.2.6.2.2.1.9 IGraphicsView
s erType: public ab tract «int face» Interface

 System Implements Pac s ct

IGraphicsView Interfaces

kage: Interface The Obje

Method Type Notes

gsGetGraphics
View or
()

«pure»
public

ract
IGraphi
sViewPr
cessor*

Process abst :
c
o

gsGetViewRec
t ()

«pure»
public
abstract:
iRect*

gsAssignGrap
hicsViewProce
ssor
(IGr e
wPr)

»

tract
void

:
h

ut]

«pure
public
abs :

param
IGrap
ino

 viewProc [
icsViewProcessor* -

aphicsVi
ocessor*

gsGetSceneMa

ager ()

«pure»
public
abstract: n
IGraphic

 320

sSceneM
anager*

 «pure»
gsGetSceneCa

era ()
public
abstract:
IGraphic
sCamera
*

m

gsGetSubView
s ()

«pure»
public
abstract:
IGraphic
sViewIter
ator*

gsGetEnabledI
nterfaceFlagsF
orView ()

«pure»
public
abstract:
unsigned
int

B - 1.2.2.2.6.2.2.1.10 IGraphicsViewIterator
Type: public abstract «interface» Interface
 Implements: IIterator.
Package: Interfaces The Object System Implements

IGraphicsViewIterator Interfaces
Method Type Notes
 IIterator ub() p lic:
 firstEntry () public

abstract:
T

 previousEntry

public
act

() abstr

T
:

 nex ntry ()
act

tE public
abstr
T

:

 lastEntry ()
act

public
abstr
T

:

 321

 num ntries () public
abstract:

E

int

B - 1.2.2.2.6.2.2.1.11 IProcessableGraphicsObject
Typ public abstract «interface» Interfacee:

 Extends: IGraphicsCapableObject.
Package: Interfaces The Object System mplements

IProcessableGraphicsObject Interfaces

 I

Method Type Notes

public

jec

gsGetGraphics
ProcessorObje
ct ()

abstract:
IGraphic

«pure»

sProcess
orOb
*

t

gsAssignGrap
hicsProcessor
Object

r o
cessorObject*)

«pure»

ct:

id

param: procObj [
raph

inout]

public
abstra
vo

IG icsProcessorObject* -

(IG aphicsPr

gsGetGraphicI
nter le
men

«pure»
public
abstract:
unsigned
int

facesImp
ted ()

cs

Resources ()

«pure»

t
I

gsGetGraphi public

abstrac
IString

:
te

rator*

gsGetResource
s ()

bstract
std::vect
or<std::s
tring*>*

«pure»
public
a :

 322

 323

B - Utility Includes

s r s a pl c classes that were shared
accr ct

1.2.2.3

Thi package

oss proje
epresent
s.

 few tem ate classes or generi

basic_string

CT:typename

CStdStr

+ nChars: ULONG

+ CStdStr()
+ CStdStr(MYT YPE&)
+ CStdStr(std::string&)
+ CStdStr(std::wstring&)
+ CStdStr(PCMYST R, MYSIZE)
+ CStdStr(PCST R)
+ CStdStr(PCWSTR)
+ CStdStr(MYCITER, MYCITER)
+ CStdStr(MYSIZE, MYVAL, MYALLOC&)
+ CStdStr(_bstr_t&)
+ oper
+ oper
+ oper
+ oper
+ oper

ator =(MYTYPE&) : MYT YPE&
ator =(std::string&) : MYT YPE&
ator =(std::wstring&) : MYTYPE&
ator =(PCSTR) : MYT YPE&
ator =(PCWSTR) : MYTYPE&

+ operator =(CT) : MYTYPE&
+ operator =(_bstr_t&) : MYT YPE&
+ assign(MYTYPE&) : MYT YPE&
+ assign(MYTYPE&, MYSIZE, MYSIZE) : MYTYPE&
+ assign(MYBASE&) : MYT YPE&
+ assign(MYBASE&, MYSIZE, MYSIZE) : MYTYPE&
+ assign(CT *, MYSIZE) : MYTYPE&
+ assign(MYSIZE, MYVAL) : MYT YPE&
+ assign(CT *) : MYTYPE&
+ assign(MYCIT ER, MYCIT ER) : MYTYPE&
+ operator +=(MYTYPE&) : MYTYPE&
+ operator +=(std::string&) : MYTYPE&
+ operator +=(std::wstring&) : MYT YPE&
+ operator +=(PCSTR) : MYTYPE&
+ operator +=(PCWST R) : MYTYPE&
+ operator +=(CT) : MYTYPE&
+ operator +=(_bstr_t&) : MYTYPE&
+ «friend» operator+(MYT YPE&, MYTYPE&) : MYT YPE
+ «friend» operator+(MYT YPE&, CT) : MYT YPE
+ «friend» operator+(MYT YPE&, PCSTR) : MYT YPE
+ «friend» operator+(MYT YPE&, PCWSTR) : MYTYPE
+ «friend» operator+(PCST R, MYTYPE&) : MYT YPE
+ «friend» operator+(PCWSTR, MYTYPE&) : MYTYPE
+ «friend» operator+(_bstr_t&, MYTYPE&) : MYT YPE
+ «friend» operator+(MYT YPE&, _bstr_t&) : MYT YPE
+ ToUpper() : MYTYPE&
+ ToLower() : MYTYPE&
+ Normal ize() : MYT YPE&
+ GetBuf(int) : CT*
+ SetBuf(int) : CT *
+ RelBuf(int) : void
+ BufferRel() : void
+ Buffer()
+ BufferSet(int)
+ Equals(CT *, bool)
+ Load(UINT , HMODULE) : bool
+ Format(UINT) : void
+ Format(CT*) : void
+ AppendFormat(CT*) : void
+ AppendFormatV(CT *, va_l ist) : void
+ FormatV(CT *, va_l ist) : void
+ Al locSysString() : BSTR
+ Col late(PCMYST R) : int
+ Col lateNoCase(PCMYSTR) : int
+ Compare(PCMYSTR) : int
+ CompareNoCase(PCMYST R) : int
+ Delete(int, int) : int
+ Empty() : void
+ Find(CT) : int
+ Find(PCMYSTR) : int
+ Find(CT , int) : int
+ Find(PCMYSTR, int) : int
+ FindOneOf(PCMYST R) : int
+ FormatMessage(PCMYST R) : void
+ FormatMessage(UINT) : void
+ GetAt(int) : CT
+ GetBuffer(int) : CT *
+ GetBufferSetLength(int) : CT*
+ GetLength() : int
+ Insert(int, CT) : int
+ Insert(int, PCMYSTR) : int
+ IsEmpty() : bool
+ Left(int) : MYTYPE
+ LoadString(UINT) : bool
+ MakeLower() : void
+ MakeReverse() : void
+ MakeUpper() : void
+ M id(int) : MYTYPE
+ M id(int, int) : MYT YPE
+ ReleaseBuffer(int) : void
+ Remove(CT) : int
+ Replace(CT, CT) : int
+ Replace(PCMYST R, PCMYSTR) : int
+ ReverseFind(CT) : int
+ ReverseFind(PCMYST R, MYSIZE) : int
+ Right(int) : MYT YPE
+ SetAt(int, CT) : void
+ SetSysString(BSTR*) : BSTR
+ SpanExcluding(PCMYSTR) : MYT YPE
+ SpanIncluding(PCMYST R) : MYT YPE
+ AnsiT oOem() : void
+ OemT oAnsi() : void
+ T rim() : MYTYPE&
+ TrimLeft() : MYT YPE&
+ TrimLeft(CT) : MYTYPE&
+ TrimLeft(PCMYSTR) : MYT YPE&
+ TrimRight() : MYTYPE&
+ TrimRight(CT) : MYT YPE&
+ TrimRight(PCMYST R) : MYTYPE&
+ FreeExtra() : void
+ operator [](int) : CT &
+ operator [](unsigned int) : CT&
+ operatorconst CT*()

T:class

VectorBasedIteratorTemplateClass

- m_vVector: *std::vector<T>
- m_Iterator: std::vector<T>

+ VectorBasedIteratorTemplateClass()
+ AttachVector(std::vector<T> id
+ fi rstEntry() : T
+ previousEntry() : T
+ nextEntry() : T
+ lastEntry() : T
+ numEntries() : int

Name: Uti l i ty Includes
Author: Jeff Plummer
Version: 1.0
Created: 2/8/2004 3:26:37 PM
Updated: 11/4/2004 4:13:44 PM

«interface»

T:class

IIterator

+ IIterator()

+ «pure» iterateForward() : void

+ «pure» fi rstEntry() : T
+ «pure» isDone() : bool
+ «pure» lastEntry() : T
+ «pure» numEntries() : int
+ «pure» resetIterator() : void
+ «pure» currentEntry() : T

*) : vo

Figure 137 : Utility Includes

B - 1.2.2.3.1.1.1.1.1 CStdStr

 324

Type: public Class
 Implements: basic_string.
Package: Utility Includes

#define CStdStr _SS // avoid compiler warning 4786

CStdStr Attributes
Attribute Type Notes
 nChars public :

ULONG
struct SSSHDR - useful for non
Std C++ persistence schemes.

CStdStr Methods
Method Type Notes
 CStdStr () public: CStdStr inline constructors
 CStdStr
(MYTYPE&)

public: param: str [MYTYPE& - inout]

 CStdStr
(std::string&)

public: param: str [std::string& - inout]

 CStdStr
(std::wstring&
)

public: param: str [std::wstring& - inout
]

 CStdStr
(PCMYSTR,
MYSIZE)

public: param: pT [PCMYSTR - in]
param: n [MYSIZE - in]

 CStdStr
(PCSTR)

public: param: pA [PCSTR - in]

 CStdStr
) (PCWSTR

public: param: pW [PCWSTR - in]

 CStdStr

YCITER)

public: param: first [MYCITER - in]

(MYCITER, param: last [MYCITER - in]
M
 C
(MYSIZE,
MY

St

VAL,
A

ic: : MYSIZE - in]
: ch [MYVAL - in]

param: al [MYALLOC& - inout

dStr publ param
param

 nSize [

MY LLOC&)]

 CStdStr
(_bstr_t&)

public: m: bstr [_bstr_t& - inout] para

 operator =
(MYTYPE&)

public:
MYTYP
&

am: str [MYTYPE& - inout]

dStr inline assignment
ato on

now ta

E
par

CSt
oper rs -- the ssasn functi

kes care of fixing the

 325

MSV
know
Q1

C (see
le

723

 assignment bug
dge base article
98).

 operator =
(std::string&)

public:
MYTYP
&

: str [std::string& - inout]
E

param

 operator =
(std::wstring&
)

public:
MYTYPE
&

param: str [std::wstring& - inout
]

 operator =
(PCSTR)

public:
MYTYPE

param: pA [PCSTR - in]

&
 operator =
(PCWSTR)

public
MYTYPE
&

: param: pW [PCWSTR - in]

 operator = public: param: t [CT - in]
(CT) MYTYPE

&
 op
(_b

e or =
str_t&

: : bstr [_bstr_t& - inout] rat
)

public
MYTYPE
&

param

 assign
(MYTYPE&)

:
TYPE

param:

lo
C g (KB:
398) Thanks to Pete The

lumber for catching this one
h
a
un

public
MY

 str [MYTYPE& - inout]

& Over
MSV
Q172
P

ads also needed to fix the
 assignment bu

*** T
you h
refco

ey also are compiled if
ve explicitly turned off
ting

 assi
Y

MYS
MYS

blic:
TYP

&

am: str [MYTYPE& - inout]
: in]
:]

gn pu
(M TYPE&,

IZE,
IZE)

MY E param
param

par
 nStart [MYSIZE -
 nChars [MYSIZE - in

 assign
(MYBASE&)

public:
MYTYPE
&

aram: str [MYBASE& - inout]

p

 assign
(MYBASE&,

public:
MYTYPE

 - inout]
E - in]

ram: nChars [MYSIZE - in] MYSIZE, & pa

param: str [MYBASE&
param: nStart [MYSIZ

MYSIZE)
 assign (CT*, public: param: pC [CT* - inout]

MYSIZE) MYTYPE

&
param: nChars [MYSIZE - in]

 326

 assign
(MYSIZE,
MYVAL)

public:
MYTYPE
&

param: nChars [MYSIZE - in]
param: val [MYVAL - in]

 assign (CT*) public:
MYTYPE
&

param: pT [CT* - inout]

 assign
(MYCITER,
MYCITER)

public:
MYTYPE
&

param: iterFirst [MYCITER - in
]
param: iterLast [MYCITER - in
]

 operator +=
(MYTYPE&)

public:
MYTYPE
&

param: str [MYTYPE& - inout]

--

CStdStr inline concatenation. ----
--

 operator +=
(std::string&)

public:
MYTYPE
&

param: str [std::string& - inout]

 operator +=

public:

&

param: str [std::wstring& - inout

(std::wstring& MYTYPE]
)
 o
(PCSTR

pe
)

ic:
P

&

: STR - in] rator += publ
MYTY E

param

 pA [PC

 ope
(PCWSTR)

ic:
P

&

m:

rator += publ
MYTY E

para pW [PCWSTR - in]

 operator +=
(CT)

public:
MYTYP
&

: t [CT - in]
E

param

 operator +=
s

public:
YP

m: bstr [_bstr_t& - inout]
(_b tr_t&) MYT

&
E

para

 operator+
(MYTYPE&,
MYTYPE&)

«friend»
public:
MYTYP

m: out

am: MYTYPE& - inout

o
friend

E

para
]
par
]

 str1 [MYTYPE& - in

 str2 [

additi n operators -- global
functions.

 operator+ «friend» : str [MYTYPE& - inout] param

 327

(MYTYPE&,
)

public:
YP

aram: t [CT - in]
CT MYT E

p

 ope
(MYTYPE&,
PCS)

d»
public:
MYTYP

param:
:

rator+

TR

«frien

E
param

 str [MYTYPE& - inout]
 sz [PCSTR - in]

 ope
(MYTYPE&,
PCWSTR)

«friend»
public:
MYTYPE

param: PE& - inout]
param: sz [PCWSTR - in]

rator+ str [MYTY

 ope
(PCSTR,
MYTYPE&)

nd»
:

MYTYP

param:
: E& - inout]

rator+ «frie
public

E
param

 pA [PCSTR - in]
 str [MYTYP

 ope
(PC
MYT

nd»
:

MYTYP

param: in]
:

rator+
WSTR,
YPE&)

«frie
public

E
param

 pW [PCWSTR -
 str [MYTYPE& - inout]

 ope
(_bs
MYT

«friend»
public:
MYTYPE

param:
param: E& - inout]

rator+
tr_t&,
YPE&)

 bstr [_bstr_t& - inout]
 str [MYTYP

 operator+
Y

_bstr_t&)

«friend»
ic:

P

param: str [MYTYPE& - inout]
:

(M TYPE&, publ

MYTY E
param bstr [_bstr_t& - inout]

 ToU ic:
P

&

--

changi
-------- -
-------- -----
--

pper () publ
MYTY E

------ --------------------------------
------------------------- Case
ng functions ----------------

--------- -----------------

 ToL ic:
P

&

ower () publ
MYTY E

 Nor ic:
P

&

malize () publ
MYTY E

 Get t) public:
CT*

param:

--

CStdSt
charact e MS'

lem ction
that we
_Freez
protect
problem ated with ref-
countin

Buf (in nMinLen [int - in]

r -- Direct access to
er buffer. In th

imp entation, the at() fun
 use here also calls
e() providing us some
ion from multithreading

s associ
g. ----------------------------

 328

--

 SetBuf (int) :

param:

public
CT*

 nLen [int - in]

 Rel) :
void

param:

Buf (int public nNewLen [int - in]

 Buf () public:
void

 ferRel

 Buf public: fer ()
 BufferSet

t)
public: param: nLen [int - in]

(in
 Equals (CT*,
bool)

query:

: nout]
param: bUseCase [bool - in]

public

param pT [CT* - i

 Loa ,
HM

:
bool

:
param:
in]

--

C
A g from

source specified by nID
rce

tif
 this

true if successful, false otherwise
-------- ----------

d (UINT
ODULE)

public param nId [UINT - in]
 hModule [HMODULE -

FUN
REM
re

TION: CStdStr::Load
RKS: Loads strin

PARA
Iden
in

METERS: nID - resou
ier. Purely a Win32 thing
case RETURN VALUE:

 Format
(UINT)

public:
void

param: nId [UINT - in]

--

FUNCTION: CStdStr::Format
void _cdecl
Formst(CStdStringA& PCSTR
szFormat, ...) void _cdecl
Format(PCSTR szFormat);
DESCRIPTION: This function
does sprintf/wsprintf style
formatting on CStdStringA
objects. It looks a lot like MFC's
CString::Format. Some people
might even call this identical.
Fortunately, these people are

 329

now dead. PARAMETERS: nId
- ID of string resource holding
the format string szFormat - a

specifiers argList - a va_list
holding the arguments for the
format specifiers. RETURN
VALUE --- ------
--
-------------- formatting (using
wsprintf style formatting)

PCSTR holding the format

: None. ----------

 Format (CT*) public: CT* - inout]
void

param: szFmt [

 public:
AppendFormat void

param: szFmt [CT* - inout]

(CT*)
 public: par
AppendFormat
V (CT*,
va_list)

void
am: szFmt [CT* - inout]

param: argList [va_list - in]

an efficient way to add formatted
characters to the string. You
may only add up to
STD_BUF_SIZE characters at a
time, though

 FormatV
(CT*, va_list)

public:
void

param: szFormat [CT* - inout]
param: argList [va_list - in]

--

FUNCTION: FormatV void
FormatV(PCSTR szFormat,
va_list, argList);
DESCRIPTION: This function
formats the string with sprintf
style format-specs. It makes a
general guess at required buffer
size and then tries successively
larger buffers until it finds one
big enough or a threshold
(MAX_FMT_TRIES) is
exceeded. PARAMETERS:
szFormat - a PCSTR holding the

Microsoft specific va_list for
variable ar

format of the output argList - a

gument lists

 330

RETURN VALUE: --------------

--

A
g (

llo ysStrin
)

ic
:

BSTR

------- -----------------------

CString Facade Functions: The
i

to allow you to use this class as a
in replacement for CString.

cS
publ
query

-

follow

drop-
-

ng methods are intended

----- -------------------------
 Col
(PCMYSTR)

public
query: in

param:late
t]

 szThat [PCMYSTR - in

CollateNoCase
(PCMYSTR)

public
query: in

am: szThat [PCMYSTR - in
t

par
]

 Com
(PC query: in

m: R - in
]

pare
MYSTR)

public
t

para

 szThat [PCMYST

CompareNoCa
se (PCMYSTR)

blic
query: in

: szThat [PCMYSTR - in pu
t

param
]

 Delete (int,

public: m: nIdx [int - in]
:

int) int

para
param nCount [int - in]

 Em
id

pty () public:
vo

 Find (CT)
query: in

m:

public
t

para ch [CT - in]

 Fin
(PCMYSTR) ery: in

m: szSub [PCMYSTR - in] d public
qu t

para

 Find (CT, int) public
query: in

am: ch [CT - in]
: nStart [int - in] t

par
param

 Find

(PCMYSTR,
int)

query: int
: in]

param:
public param

 szSub [PCMYSTR -
 nStart [int - in]

 Fin
(PCMYSTR)

blic
query: int

aram:
in]

dOneOf pu p szCharSet [PCMYSTR -

Form g
e (P

public: param: R -
 atMessa

CMYSTR)
void

 szFormat [PCMYST
in]

 331

FormatMessag
 (UINT)

public:
void

: nFormatId [UINT - in] param

e
 GetAt (int) public

query:
CT

param: nIdx [int - in]

--

GetXXXX -- Direct access to

character buffer --------------------
--

 GetBuffer public: param: nMinLen [int - in]
(int) CT*

G
en

etB L
gt int)

public:

param: nLen [int - in]
ufferSet

h (
CT*

 GetLength () public
: in

GetLength() -- MFC docs say
s t

ber of
CHARACTERs (chars or

r_

query t this i
truth it is the num

he # of BYTES but in

wcha ts)
 Inse
CT)

blic:
int

aram:
param: ch [CT - in]

rt (int,

pu p nIdx [int - in]

 Inse
PCMYSTR)

blic:
int

m:
param:]

rt (int, pu para nIdx [int - in]
 sz [PCMYSTR - in

 IsEmpty () public
query
bool

:

 Left (int) public

TYP

aram:
query:
MY E

p nCount [int - in]

 LoadString
(UIN

public:
bool

param: INT - in]
 T)

 nId [U

 MakeLower () c:

 publi
void

 MakeReverse
()

public:
void

 MakeUpper () :
id

 public
vo

 Mid public
query:
MYTYPE

:

 (int) param nFirst [int - in]

 332

 Mid)
ery:

MYTYPE

param:
param: t [int - in]

 (int, int public
qu

 nFirst [int - in]
 nCoun

 ReleaseBuffer
(int)

public:
void

param: nNewLen [int - in]

 Rem CT) public: param: ch [CT - in] ove (
int

 Rep ,
CT)

:
int

:
: [CT - in]

lace (CT

public param
param

 chOld [CT - in]
 chNew

 Rep
(PCMYSTR,
PCM

public:
int

param: szOld [PCMYSTR - in]
param: szNew [PCMYSTR - in
]

lace

YSTR)

 ReverseFind
T

public
 in

param: ch [CT - in]
(C) query: t
 Rev
(PCMYSTR,

YS

blic
query: in

: szFind [PCMYSTR - in

m:]

Revers

tr

erseFind

M IZE)

pu
t

param
]
para pos [MYSIZE - in

eFind overload that's not
in CS ing but might be useful

 Rig
query:

P

:ht (int) public

MYTY E

param

 nCount [int - in]

 Set
CT) id

:
param: ch [CT - in]

At (int,

public:
vo

param nIndex [int - in]

 S
(BS

et
T

:] SysString
R*)

public
query:
BSTR

param

 pbstr [BSTR* - inout

a

)

public

am: szCharSet [PCMYSTR -
Sp
g (PCMYSTR

nExcludin

query:
MYTYPE

in]

par

 Spa g
(PCMYSTR)

blic
query:

P

m: YSTR -
in]

nIncludin pu

MYTY E

para szCharSet [PCM

 Ans
()

c: ing
To re

available only in Unicode builds.
ev plate
so k of

 and t_cast to
account for the fact that

iToOem publi
void

CStr
Ansi

's OemToAnsi and
Oem functions a

How
we al
CT

er since we're a tem
 need a runtime chec
 a reinterpre

 333

CStdStringW gets instantiated
even in non-Unicode builds.

 O
()

em i

: ToAns public
void

 Trim lic:
MYTYPE
&

--- --------------
--------------------------------- Trim
and its variants ---------------------
--

 () pub ----- ------------------

 Trim :
P

Left () public
MYTY
&

E

 Trim T) public:
MYTYPE
&

param: tTrim [CT - in]

Left (C

 Trim
C

public:
P

param: szTrimChars [
Y

Left
(P MYSTR) MYTY

&
E PCM

STR - in]

 Trim ht () blic:
P

Rig pu
MYTY
&

E

 Trim
T

lic:
P

m: tTrim [CT - in] Right
(C)

pub
MYTY
&

E
para

 Trim
(PC

:
P

m: szTrimChars [
YSTR - in]

Right
MYSTR)

public
MYTY
&

E PCM

para

 FreeExtra () lic: pub
void

 ope
(int)

:

m:

Array-indexing operators.
Required because we defined an

ci
(T an
oi out)

rator []

public
CT&

para

 nIdx [int - in]

impli
CT*
for p

t cast to operator const
hanks to Julian Selm

nting this
 ope
(int)

public
const
query:
CT&

param: nIdx [int - in]

rator []

 operator []
(unsigned int)

public:
CT&

param: nIdx [unsigned int - in]

 operator []
 int)

public signed int - in]
(unsigned const

param: nIdx [un

 334

query:
CT&

 operatorconst
CT* ()

public
query:

B - 1.2.2.3.1.1.1.1.2 IIterator
Type: public abstract «interface» Class
Package: Utility Includes

IIterator Methods
Method Type Notes
 IIterator () public:
 firstEntry () «pure»

public
abstract:
T

 isDone () «pure»
public
abstract:
bool

 lastEntry () «pure»
public

ct:
T

virtual T previousEntry() = 0;
virtual T nextEntry() = 0;

abstra

 numEntries () «pure» virtual bool hasNextEntry() = 0;
public
abstract:

virtual bool hasPreviousEntry()
= 0;

int
 resetIterator () »

act

 «pure
public
abstr
void

:

 currentEntry
 ublic

ct:
()

«pure»
p
abstra
T

iterateForward
()

«pure»
public
abstract:
void

 335

B - 1.2.2.3.1.1.1.1.3 asedIteratorTemplateClass VectorB
Type: public Class

Iterator.
ludes

 Extends: I
Package: Utility Inc

VectorBasedIteratorTemplateClass

 Attributes
Attribute Type Notes
 m_vVector :

std::vect
or<T>

 private

 m_Iterator private :
std::vect
or<T>

VectorBasedIteratorTemplateClass Methods
Method Type Notes

VectorBasedIt
erat t
eClass ()

:

orTempla

public

 AttachVector
(std::vector<T
>*)

public:
void

: v [std::vector<T>* -
t]

param
inou

 firstEntry () public
abstract:
T

 previousEntry
()

public
abstract:

T
 nextEntry () public

abstract:

T
 lastEntry () public

abstr
T

act:

 num ntries ()
abstract
int

E public
:

 336

 337

B

 - y mic Vie

 - itialize

This es t g the game system.

s diagram shows the use cases in rototype.

1.2.3 D na w

B

1.2.3.1

 package contains all use cas

In

hat are related to initailizin

Thi volved in initializing the p

System

(from Game Analysis - Use Case and Dynamic View)

Initialize Game
System

Initialize AI System

(from Not Implemented in Demo V1.0)

Initialize Audio
System

Initialize Graphics
System

(from Not Implemented in Demo V1.0)

Initialize Netw ork
System

(from Not Implemented in Demo V1.0)

Initialize UI System

Name: Ini tial ize
Au Jeff Plummer
Ve 1.0
Cr d: 1/11/2004 8:28:46 PM
Up d: 11/8/2004 3:47:42 PM

thor:
rsion:

eate
date

T he simple design is NOT presented as THE DESIG
this architecture. It is m erely a simple implementati
archi tecture.

N T O USE for
on of this

Initialize AI2
System

Initialize Graphics
3D System

(from Not Implemented in Demo V1.0)

Initialize Physics
System

Initialize Obj ect
System

Not Im plem ented in Version 1.0 of the Prototype

«include»

«include»

«include»

«include»

«include»

«include»

Figure 138 : Initialize

B - 1.2.3.1.1.1.1.1.1 Initialize AI2 System

Typ public UseCasee:
Pac Initialize

kage:

 338

Game System AI System 2

Name: Design: Ini tial ize AI2 System (Component Sequence)
Author: Jeff Plummer
Version: 1.0

11/8/2004 9:12:53 AMCreated:
Updated: 11/8/2004 9:17:20 AM

T he simple design is NOT presented as THE DESIGN TO USE for
this archi tecture. It is merely a simple implementation of this
architecture.

//Create

//Ini ti

f events at the component level required to

I2 System" use case.
Figure 139 : Design: Initialize AI2 System (Component Sequence)

Design: Initialize AI2 System (Component Sequence) Messages

al ize and Connect Object System

This diagram shows the sequence o
implement the "Initialize A

I
D

Messag
e

From
Object

To
Object

Notes

1 //Create Game
System

AI
System
2

Create an instance of the
AI2 System.

2 //Initiali
ze and
Connec

Game
System

AI
System
2

Connect the object
system, and perform any
necessary initialization.

 339

t Object
System

CDemoApplication Root CAI2System«interface»
IAI2System

Name: Design: Ini tial ize AI2 System (Class-Interface Sequence)
Author: Jeff Plummer
Version: 1.0
Created: 11/8/2004 9:17:40 AM
Updated: 11/8/2004 9:28:35 AM

T he simple design is NOT presented as T HE DESIGN TO USE for
this archi tecture. It is merely a simple implementation of this
archi tecture.

Root()

CAI2System()

IAI2System*:= createAI2System(pObjectSystem)

connectObjectSystem(objectSystem)

connectObjectSystem(objectSystem)

 Sequence)

sign: Initialize AI2 System (Class-Interface Sequence) Messages

Figure 140 : Design: Initialize AI2 System (Class-Interface

De

I
D

Messag
e

From
Object

To
Object

Notes

1 Root()
ca

CDemo
Appli
tion

Root Create an instance of the
only exported class in the
AI system.

2 Root turn
creates and AI system
object, and returns.

CAI2Sy
stem()

CAI2Sy
stem

The root class in

3 createA
e

tS

CDemo Create the AI System by
 object I2Syst

m(IAI2
Objec
ystem*)

Applica
tion

Root
connecting the
component to the AI
Component.

4 Root connect IAI2Sys Interface - Connect the

 340

ObjectS
ystem(I

object component to the
AI component.

AI2Obj
ectSyst
em*)

tem

5
tS

bj
t

em*)

IAI2Sys CAI2Sy Connect the object connect
Objec
ystem(I
AI2O
ectSys

tem stem component to the AI
component.

B - 1.2.3.1.1.1.1.1.2 lize AI System Initia
Type: sepublic U Case
Package: Initialize

 341

Artificial Intelligence

Name: Design: Ini tial ize AI System (Component Sequence)
Author: Jeff Plummer
Version: 1.0
Created

Game System

The simple design is NOT presented as T HE DESIGN TO USE for
this arc tecture. It is his
archite ure.

hi
ct

 merely a simple implementation of t

: 1/11/2004
Updated: 11/8/2004

 8:56:41 PM
 9:31:11 AM

//Create

//Ini tial ize AI System

This diagram shows the sequenc nt level required to
implement the "Initialize AI System" use case.

Figure 141 : Design: Initialize AI System (Component Sequence)

Design: Initialize AI System (Component Sequence) Messages

e of events at the compone

I
D

Messag
e

From
Object

To
Object

Notes

1 Game
System

Artificia
l
Intellige

ce

Create an instance of the
AI system.

//Create

n
2 //Initiali

ze AI
System

Game
System

icia
l
Intellige
nce

Initialize the AI system
and connect it to the
object component.

Artif

 342

Root

Name: Design: Ini tial ize AI System (Class-Interface Sequence)
Author: Jeff Plummer

6:1
Version: 1.0
Created: 2/7/2004 0:35 PM
Updated: 11/8/2004 9:23:54 AM

The simple design is NOT presented as THE DESIGN TO USE for
this architecture. It is merely a simple implementation of this
architecture.

«interface»
IAISystem

CDemoApplication CAISystem

Root()

CAISystem()

IAISystem*:= createAISystem(pObjectSystem)

connectObjectSystem(objectSystem)

connectObjectSystem(objectSystem)

m shows the sequenc ss/interface level required to

e AI Syst
igure 142 : Design: In terface Sequence)

Design: Initialize AI System (Class-Interface Sequence) Messages

This diagra
implement the "Initializ

F

e of events at the cla
em" use case.
itialize AI System (Class-In

I
D

Messag
e

From
Object

To
Object

Notes

1 CDemo
Applica
tion

Root Create an instance of the
only exported class in the

Root()

AI system.
2 CAISys

tem()
Root CAISys

tem d AI system
object, and returns.

The root class in turn
creates an

3 CDemo
pplica

tion

Root Create the AI System by
ct
I

createA
ISystem
(IAIObj
ectSyst
em*)

A connecting the obje
component to the A
Component.

4
bjectS

connect
O
ystem(I
AIObje

Root IAISyst
em

Interface - Connect the
object component to the
AI component.

 343

ctSyste
m*)

5
bjectS

IAISyst
em

CAISys
tem

Connect the object
component to the AI

connect
O
ystem(I
AIObje
ctSyste
m*)

component.

B - 1.2.3.1.1.1.1.1.3 Initialize Graphics 3D System
Typ public UseCasee:
Pac Initialize

kage:

Game System Graphics 3D System

Name: Design: Initial ize Graphics 3D System (Component Sequence)
Author: Jeff Plummer
Version: 1.0
Created: 11/8/2004 9:40:36 AM
Updated: 11/8/2004 12:11:57 PM

The simple design is NOT presented as THE DESIGN TO USE for
this archi tecture. It is merely a simple implementation of this
architecture.

//Create

//Ini t and Connect Graphics 3D System

//Load Graphics 3D Reources

re 143 : Design: Initia (Component Sequence)

Figu lize Graphics 3D System

 344

es ia e Graphics 3D Syst) Messages D

ign: Init liz em (Component Sequence

I
D

Messag
e

From
Object

To
Object

Notes

1 ame
System

raphic
s 3D
System

e
.

//Create G G Create an instance of th
graphics 3D system

2

m

ame
System

raphic
s 3D
System

Initialize the graphics 3D
system and connect it to
the object system.

//Init
and
Connec
t
Graphic
s 3D
Syste

G G

3
c

Graphic
s 3D

ystem

Graphic
s 3D

ystem

Load up any graphics
resources you need.

//Load
Graphi
s 3D
Reourc
es

S S

CDemoApplication Root CGraphics3DSystem«interface»
IGraphics3DSystem

Name: Design: Ini tial ize Graphics 3D System (Class-Interface Sequence)
Author: Jeff Plummer
Version: 1.0
Created: 11/8/2004 9:46:13 AM
Updated: 11/9/2004 1:52:05 PM

The OGRE graphics engine used
in this demo has graphics resource
loading capabi l i ties.

The simple design is NOT presented as THE DESIGN TO USE for
this archi tecture. It is merely a simple implementation of this
archi tecture.

Root(resourceConfigFi le)

CGraphics3DSystem(resourceConfigFi le)

setupResources(resourceConfigFi le)

IGraphics3DSystem*:= createGraphics3DSystem(objectSystem,xSize,ySize,bi ts,
ful lScreen)

gs3dConfigureAndStartGraphics3DSystem(xSize,ySize,bi ts,
ful lScreen)

gs3dConfigureAndStartGraphics3DSystem(xSize,ySize,bi ts,
ful lScreen)

gs3dConnectObject3DSystem(objectSystem)

gs3dConnectObject3DSystem(objectSystem)

e 144 : Desig : Initializ (Class-Interface Sequence)

Design: Initialize Graphics 3D System (Class-Interface Sequence) Messages

Figur n e Graphics 3D System

 Messag From To Notes

 345

I
D

e Object Object

1 Root(st
in

CDemo nce of the
only exported class in the
Graphics3D system.

Root Create an insta
d::str Applica
g&) tion

2 CGraph

ystem(P
rogram
mingUt
ilitiesLi
brary::S
tring&)

Root CGraph
3DSy

stem

The root class in turn
creates and Graphics 3D
system object, and
returns.

ics3DS ics

3 setupRe
sources
(Progra
mming
Utilities
Library:
:String
&)

CGraph
ics3DSy
stem

CGraph
ics3DSy
stem

Load up graphic resource
files (meshes, textures,
etc.)

4 createG
raphics
3DSyst
em(IGr
aphics3
DObjec

*, int,
int, int,
bool)

CDemo
Applica
tion

Root Create the Graphics3D
System by connecting the
object component to the
Graphics3D Component.

tSystem

5 gs3dCo

AndSta

3DS
ystem(i

ol)

Root IGraphi

stem

Interface - Setup the
nfigure cs3DSy graphics window settings.

rtGraph
ics

nt, int,
int,
bo

6
e

raph

IGraphi

m

CGraph

Implementation - Setup gs3dCo
nfigur
AndSta
rtG
ics3DS

cs3DSy
ste

ics3DSy
stem

the graphics window
settings.

 346

ys
nt, int,

tem(i

int,
bool)

7
ectO

IGraphi
cs3DOb

*)

ot aphi
 component to the

Graphics 3D component.

gs3dCo
nn
bject3D
System(

jectSyst
em

Ro IGr
cs3DSy
stem

Interface - Connect the
Object

8

bject3D
System(
IGraphi
cs3DOb
jectSyst
em*)

IGraphi
cs3DSy

CGraph
ics3DSy

Implementation -
Connect the Object

gs3dCo
nnectO

stem stem component to the
Graphics 3D component.

B - .1 e G

1.2.3.1.1 .1.1.4 Initializ raphics System
Typ blic UseCasee: pu
Pac Initialize

kage:

 347

Graphics 3D System

Name: Design: Ini tial ize Grap
Author: Jeff Plummer
Version: 1.0
Created: 1/11/2004 8:57:37 PM
Updated: 11/8/2004 9:45:10 AM

Gam ysteme S

The simple design is NOT present
this archi tecture. It is merely a sim
architecture.

ed as T HE DESIGN T O USE for
ple implementation of this

//Create

//Ini t Graphics System

hics System - (Component Sequence)

//Load up graphics resources

Figure 145 : Design: Initi mponent Sequence)

sign: Initia e Graphics System - (Component Sequence) Messages

alize Graphics System - (Co

De

liz

I
D

Messag
e

From
Object

To
Object

Notes

1 //Create Game
System

Graphic
s 3D
System

 an instance of the
graphics system.
Create

2 //Init Game
ystem

Graphic
3D
ystem

Initialize the graphics
o Graphic

s
System

S s
S

system and connect it t
the object system.

3 Graphic
s 3D
System

Graphic
s 3D
System

p any graphics
resources you need.

//Load
up
graphic
s
resourc
es

Load u

 348

CDemoApplication Root «interface»
IGraphicsSystem

CGraphicsSystem CGraphicsResourceManager

Name: Design: Ini tial ize Graphics System (Class-Interface Sequence)
Author: Jeff Plummer
Version: 1.0
Created: 11/8/2004 10:22:18 AM
Updated: 11/8/2004 10:42:30 AM

The
this
ar

 sim ple design is NOT presented as THE DESIGN T O USE for
 architecture. It is merely a simple im plem entation of this

chi tecture.

Root(resourceConfigFi le)

CGraphicsSystem (configFi le)

CGraphicsResourceManager()

addArchiveResourceExtension(extension)

addExtensionInArchiveT oLoad(extension)

addArchiveResourceLocation(location)

loadGraphicsResources()

IGraphicsSys := createGraphicsSystem(obj
ful lScreen)

tem* ectSystem ,xSize,ySize,bi ts,

gs
ful l

ConfigureAndStartGraphicsSystem(xSize,ySize,bi ts,
Screen)

gsConfigureAndStartGraphicsSystem(xSize,ySize,bi ts,
ful lScreen)

gsConnectObjectSystem(objectSystem)

gsConnectObjectSystem (objectSystem)

re 146 : Design: Initia s-Interface Sequence)

s ialize Graphics System (Class-Interface Sequence) Messages

Figu lize Graphics System (Clas

De ign: Init

I
D

Messag
e

From
Object

To
Object

Notes

1 Root(st
d::strin
g&)

CDemo
Applica
tion

Root
ass in the

Create an instance of the
only exported cl
Graphics2D system.

2 raph Root CGraph
sSyste

m

The root class in turn
creates and Graphics 2D
system object, and
returns.

CG
icsSyste
m(Prog
rammin
gUtiliti
esLibra
ry::Stri
ng&)

ic

3 ph CGraph
sSyste

CGraph
sReso

Create an instance of the
sin

CGra
icsReso ic ic gleton graphics

 349

urceMa
nager()

m urceMa
nager

resource manager.

4 CGraph
icsSyste
m

CGraph
icsReso
urceMa
nager

Based on the config file,
add list of file extensions
contain graphics
resources.

addArc
hiveRes
ourceE
xtensio
n(String
&)

5 Graph
icsSyste
m

Graph
icsReso
urceMa
nager

s
es are

graphics resources.

addExte
nsionIn
Archive
ToLoad
(String
&)

C C Based on the config file,
add list of file extension
in the resource fil

6 CGraph
icsSyste
m

CGraph
icsReso
urceMa
nager

Based on the config file,
add list of directories
contain the resource files.

addArc
hiveRes
ourceL
ocation(
String&
)

7 loadGra
phicsRe
sources

CGraph
icsSyste
m

CGraph
icsReso
urceMa

ager () n

Load the graphics
resources

8 createG
raphics
System(

bjec

*, int,
int, int,
bool)

CDemo
Applica
tion

Root

IGraphi
csO
tSystem

Create the graphics
system and connect it to
the object system.

9 oot
s system.

gsConfi
gureAn
dStartG
raphics
System(
int, int,
int,
bool)

R IGraphi
csSyste
m

Interface - Configure the
graphic

1
0

G

gsConfi
gureAn
dStart
raphics

IGraphi
csSyste
m

CGraph
icsSyste
m

Implementation -
Configure the graphics
system.

 350

System(
int, int,
int,
bool)

1
1

gsConn
ectO
ctSyste
m(IGra
phicsO

bje

bjectSy
stem*)

oot raphi
csSyste
m

object system to the
graphics system.

R IG Interface - Connect the

1
2

gsConn
ectObje

te

phicsO

IGraphi
csSyste

CGraph Implementation -

system to the graphics
system.

ctSys m m
icsSyste Connect the object

m(IGra

bjectSy
stem*)

B - 1.2.3.1.1.1.1.1.5 Initialize Object System
Type: public UseCase
Package: Initialize

 351

Obj ect & Obj ect
Management System

(Data)

Name: Design: Ini tial ize Object System - (Component Sequence)
Author: Jeff Plummer
Version: 1.0
Created: 2/9/2004 8:00:51 PM
Updated: 11/8/2004 10:44:10 AM

Game System

The simple design is NOT presented as T HE DESIGN T O USE for
this arch y a simple implementation of this
archi tec

itecture. It is merel
ture.

//Create

//Ini tial ize

Figure 147 : Design: Initialize Object System - (Component Sequence)

Design: Initialize Object System - (Component Sequence) Messages

I
D

Messag
e

From
Object

To
Object

Notes

1 //Create Game
System

Object
&

System

Create an instance of the
object system.

Object
Manage
ment

(Data)
2 //Initi Game

System
Object
&

ali ze the object
ze s

Initiali
ystem atleast to the point

 352

Object

ment
System

where the other
ts can connect

to it.
Manage componen

(Data)

CDemoApplication Root CDemoGameObj ectSystem«interface»
IObjectSystem

CDemoObj ectSceneManager

Name: Design: Ini tial i ze Object System (Class-Interface Sequence)
Author: Jeff Plummer
Version: 1.0
Created: 11/8/2004 10:44:52 AM
Updated: 11/8/2004 10:52:18 AM

The simple design is NOT pre
this architecture. It is merely
architecture.

sented as THE DESIGN TO USE for
 a simple implementation of this

Root()

CDemoGameObjectSystem()

CDemoObjectSceneManager()

ini tial izeObjectScene()

ze Object System (Class-Interface Sequence)

face Sequence) Messages

Figure 148 : Design: Initiali

Design: Initialize Object System (Class-Inter

I
D

Messag
e

From
Object

To
Object

Notes

1 Root() CDemo
Applica

Root C
on

reate an instance o

tion Object system.

f the
ly exported class in the

2 CDemo Root CDemo Create an instanc
GameO
bjectSy

GameO
e of the

object system
bjectSys
tem stem()

4 CDemo
ObjectS

CDemo
GameO

CDemo
ObjectS

C
on

ceneMa
nager()

bjectSys
tem

ceneMa
nager

instance of the
ly scene manager this

demo will use.

reate an

5 initializ
eObject

Root CDemo
GameO

Create some demo
objects for us to play

 353

Scene() bjectSys
tem

around with.

 - 1.2.3.1.1.1.1.1.6 Initialize Game System

B
Type: public UseCase
Package: Initialize

Initialize the game system by initializing the object component, and connecting all
peripheral components.

Obj ect & Object
Management System

(Data)

Artificial Intelligence AudioGraphics 3D System Netw ork User Interface

Name: Design: Ini tial ize Game System - (Component Sequence)
Author: Jeff Plummer
Version: 1.0
Created: 2/3/2004 8:56:15 PM
Updated: 11/8/2004 11:11:36 AM

The simple design is NOT presented as THE DESIGN TO USE for
this archi tecture. It is merely a simple implementation of this
archi tecture.

AI System 2 GraphicsGame System Physics Component

Not Implemented in Version 1.0 of the prototype

//Create

//Ini tial ize

//Create

//Initial ize and connect to object
component

//Create

//Ini tialize and Connect to the Object
Component

//Create

//Ini tial ize and Connect to the Object
Component

//Create

//Ini tial ize and connect to the object
component

//Create

//Ini tial ize and connect to object
component

//Create

//Ini tial ize and connect to the object
component

//Create

//Ini tial ize and connect to object
component

//Create

//Initial ize and Connect to Object
System

Figure 149 : Design: Initialize Game System - (Component Sequence)

Design: Initialize Game System - (Component Sequence) Messages

I
D

Messag
e

From
Object

To
Object

Notes

1 //Create Game
System

Object
&
Object
Manage
ment

First create the object
component system.

354

System
(Data)

2 //Initiali
ze

Game
System

Object
&
Object
Manage
ment
System
(Data)

Initialize the component
system, atleast to the
point where the other
components can connect
to it.

3 //Create Game
System

Artificia
l
Intellige
nce

Create an instance of the
AI system.

4 //Initiali
ze and
connect
to
object
compon
ent

Game
System

Artificia
l
Intellige
nce

Connect the AI
component to the object
component and initialize
it so it's ready to handle
AI objects.

5 //Create Game
System

AI
System
2

Create an instance of the
AI2 system.

6 //Initiali
ze and
Connec
t to the
Object
Compo
nent

Game
System

AI
System
2

Connect the AI2
component to the object
component and initialize
it so it's ready to handle
AI2 objects.

7 //Create Game
System

Graphic
s

Create an instance of the
Graphics 2D system.

8 //Initiali
ze and
Connec
t to the
Object
Compo
nent

Game
System

Graphic
s

Connect the Graphics2D
component to the object
component and initialize
it so it's ready to handle
Graphics2D objects.

9 //Create Game
System

Graphic
s 3D
System

Create an instance of the
graphics 3D system.

1
0

//Initiali
ze and
connect

Game
System

Graphic
s 3D
System

Connect the Graphics3D
component to the object
system and initialize it so

355

to the
object
compon
ent

it's ready to handle
graphic3D objects.

1
1

//Create Game
System

Audio Create an instance of the
audio system.

1
2

//Initiali
ze and
connect
to
object
compon
ent

Game
System

Audio Connect the Audio
component to the object
system and initialize it so
it's ready to handle audio
objects.

1
3

//Create Game
System

Networ
k

Create an instance of the
networking system.

1
4

//Initiali
ze and
connect
to the
object
compon
ent

Game
System

Networ
k

Connect the network
component to the object
systen and initialize it so
it's ready to handle
network objects.

1
5

//Create Game
System

User
Interfac
e

Create an instance of the
UI System.

1
6

//Initiali
ze and
connect
to
object
compon
ent

Game
System

User
Interfac
e

Connect the UI
component to the object
system and initialize it so
it's ready to handle UI
objects.

1
7

//Create Game
System

Physics
Compo
nent

Create an instance of the
Physics system.

1
8

//Initiali
ze and
Connec
t to
Object
System

Game
System

Physics
Compo
nent

Connect the Physics
component to the object
component and initialize
it so it's ready to handle
Physics objects.

356

B - 1.2.3.2 Tick

This diagram shows the use cases involved in ticking the prototype.

System (Ticked)

(from Game Analysis - Use Case and Dynamic View)

Tick Prototype
Game System

Tick AI System

(from Not Implemented in Demo V1.0)

Tick Audio System

Tick Graphics
System

Tick Graphics 3D
System

(from Not Implemented in Demo V1.0)

Tick Netw ork
System

(from Not Implemented in Demo V1.0)

Tick User Interface
System

(from Not Implemented in Demo V1.0)

Tick Physics
System

Tick AI2 System

Name: T ick
Author: Jeff Plummer
Version: 1.0
Created: 11/8/2004 11:43:29 AM
Updated: 11/8/2004 3:47:52 PM

The simple design is NOT presented as THE DESIGN T O USE for
this archi tecture. It is merely a simple implementation of this
architecture.

Not Implemented in Version 1.0 of the prototype

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

Figure 150 : Tick

B - 1.2.3.2.1.1.1.1.1 UTick AI System
Type: public UUseCase U
Package: Tick

Tick the artificial intelligence component. Causes objects to bounce around the screen.
Not a very complex AI system.

357

Artificial Intelligence Obj ect & Obj ect
Management System

(Data)

This Graphics system when ticked causes
the game objects to be drawn in 2D as a
sprite.

T he simple design is NOT presented as T HE DESIGN T O USE for
this archi tecture. It is merely a simple implementation of this
archi tecture.

Name: Design: T ick AI System - (Component Sequence)
Author: Jeff Plummer
Version: 1.0
Created: 9/3/2003 3:06:34 AM
Updated: 11/8/2004 1:43:12 PM

Game System

//T ick AI

//Get Views of AI Objects

//Get AI Objects in View

//Calculate AI For Object

//Get Object Posi tion

//Calculate Next Movement

//Set Direction and Posi tion

Figure 151 : Design: Tick AI System - (Component Sequence)

Design: Tick AI System - (Component Sequence) Messages

I
D

Messag
e

From
Object

To
Object

Notes

1 //Tick
AI

Game
System

Artificia
l
Intellige
nce

Tick the AI Component

2 //Get
Views
of AI
Objects

Artificia
l
Intellige
nce

Object
&
Object
Manage
ment
System
(Data)

Get an list of AI views to
process. Views contain
some context, and a list
of objects.

3 //Get AI
Objects
in View

Artificia
l
Intellige

Object
&
Object

Get the list of AI
processable objects in the
view.

358

nce Manage
ment
System
(Data)

4 //Calcul
ate AI
For
Object

Artificia
l
Intellige
nce

Artificia
l
Intellige
nce

The AI component will
then calculate the
behavior of the object it
is going to process.

5 //Get
Object
Position

Artificia
l
Intellige
nce

Object
&
Object
Manage
ment
System
(Data)

Get the Position of the
object

6 //Calcul
ate
Next
Movem
ent

Artificia
l
Intellige
nce

Artificia
l
Intellige
nce

Based on it's current
position, and it's
movement direction,
calculate it's next move.

7 //Set
Directio
n and
Position

Artificia
l
Intellige
nce

Object
&
Object
Manage
ment
System
(Data)

Write the position info
back into the object.

359

Game System AI System Object System

CDemoApplication «interface»
IAISystem

CAISystem «interface»
IAIObjectSystem

CDemoGameObjectSystemCAIView Processor «interface»
IAIView

Create a new view processor i f this
view does not yet have an AI View
Processor attached.

«interface»
IAISceneM anager

CDemoObj ectSceneM anager «interface»
IAIProcessableObj ect

CAIProcessorObject CTriangleGameObj ect

Create AI Object
Processor Object i f
necessary.

Nam e: Design: T ick AI System (Class-Interface Sequence)
Author: Jeff Plum m er
Version: 1.0
Created: 11/8/2004 12:09:58 PM
Updated: 11/8/2004 2:47:17 PM

This Graphics system when ticked causes
the game objects to be drawn in 2D as a
sprite.

The simple design is NOT presented as T HE DESIGN TO USE for
this archi tecture. It is m erely a sim ple im plem entation of this
archi tecture.

CDemoMainView

tickAISystem (tDi ff)

tickAISystem(tDi ff)

IAIViewIterator*:= aisGetAIViews()

AICom ponent::IAIViewIterator*:= aisGetAIViews()

IAIViewProcessor*:= aisGetAIViewProcessor()

AICom ponent::IAIViewProcessor*:= aisGetAIViewProcessor()

CAIViewProcessor(pView)

aisAssignAIViewProcessor(viewProc)

aisAssignAIViewProcessor(viewProc)

processView()

IAISceneManager*:= aisGetSceneM anager()

AICom ponent::IAISceneM anager*:= aisGetSceneManager()

IAIObjectIterator*:= aisGetAIProcessableObjects()

AIComponent::IAIObjectIterator*:= aisGetAIProcessableObjects()

IAIProcessorObject*:= aisGetAIProcessorObject()

IAudioProcessorObject*:= asGetAudioProcessorObject()

CAIProcessorObject(pObject)

aisAssignAIProcessorObject(procObj)

aisAssignAIProcessorObject(procObj)

processAIObject()

point3f:= aisGetObjectPosition()

AICom ponent::point3f:= aisGetObjectPosi tion()

//Calculate new position

aisSetObjectPosi tion(pos)

aisSetObjectPosi tion(pos)

Figure 152 : Design: Tick AI System (Class-Interface Sequence)

Design: Tick AI System (Class-Interface Sequence) Messages

I
D

Messag
e

From
Object

To
Object

Notes

1 tickAIS
ystem(f
loat)

CDemo
Applica
tion

IAISyst
em

Interface - Tick the AI
system.

2 tickAIS
ystem(f
loat)

IAISyst
em

CAISys
tem

Implementation - Tick
the AI System.

3 aisGetA
IViews(
)

CAISys
tem

IAIObje
ctSyste
m

Interface - Get Views of
AI objects to process...
This prototype only
contains one view.

4 aisGetA
IViews(
)

IAIObje
ctSyste
m

CDemo
GameO
bjectSys
tem

Implementation - Get
Views of AI objects to
process... This prototype
only contains one view.

5 aisGetA
IViewP
rocesso
r()

CAISys
tem

IAIVie
w

Interface - Get the AI
View Processor if it
exists.

6 aisGetA
IViewP

IAIVie
w

CDemo
MainVi

Implementation - Get the
AI View Processor if it

360

rocesso
r()

ew exists.

7 CAIVie
wProce
ssor(IA
IView*
)

CAISys
tem

CAIVie
wProces
sor

Create a view processor if
this view does not yet
have one - i.e. this is our
first time processing this
view.

8 aisAssi
gnAIVi
ewProc
essor(I
AIView
Process
or*)

CAIVie
wProces
sor

IAIVie
w

Interface - Assign the
view processor to the
view.

9 aisAssi
gnAIVi
ewProc
essor(A
ICompo
nent::I
AIView
Process
or*)

IAIVie
w

CDemo
MainVi
ew

Implementation - Assign
the view processor to the
view.

1
0

process
View()

CAISys
tem

CAIVie
wProces
sor

AI Process the view

1
1

aisGetS
ceneMa
nager()

CAIVie
wProces
sor

IAIVie
w

Interface - Get the
Scenemanager (structured
list of objects to process)

1
2

aisGetS
ceneMa
nager()

IAIVie
w

CDemo
MainVi
ew

Implementation - Get the
Scenemanager (structured
list of objects to process)

1
3

aisGetA
IProces
sableOb
jects()

CAIVie
wProces
sor

IAIScen
eManag
er

Interface - Get Ordered
list of objects to process.

1
4

aisGetA
IProces
sableOb
jects()

IAIScen
eManag
er

CDemo
ObjectS
ceneMa
nager

Implementation - Get
Ordered list of objects to
process.

1
5

aisGetA
IProces
sorObje
ct()

CAIVie
wProces
sor

IAIProc
essable
Object

Interface - Get the AI
object processor
responsible for
processing this object.

1 asGetA IAIProc CTriang Implementation - Get the

361

6 udioPro
cessorO
bject()

essable
Object

leGame
Object

AI object processor
responsible for
processing this object.

1
7

CAIPro
cessorO
bject(I
AIProc
essable
Object*
)

CAIVie
wProces
sor

CAIPro
cessorO
bject

Create AI Object
Processor Object if
necessary.

1
8

aisAssi
gnAIPr
ocessor
Object(
IAIProc
essorOb
ject*)

CAIPro
cessorO
bject

IAIProc
essable
Object

Interface - Assign the
processor object to the
game object.

1
9

aisAssi
gnAIPr
ocessor
Object(
IAIProc
essorOb
ject*)

IAIProc
essable
Object

CTriang
leGame
Object

Implementation - Assign
the processor object to
the game object.

2
0

process
AIObje
ct()

CAIVie
wProces
sor

CAIPro
cessorO
bject

Perform AI Processing on
this object

2
1

aisGetO
bjectPo
sition()

CAIPro
cessorO
bject

IAIProc
essable
Object

Interface - Get the game
object's position.

2
2

aisGetO
bjectPo
sition()

IAIProc
essable
Object

CTriang
leGame
Object

Implementation - Get the
game object's position.

2
3

//Calcul
ate new
position

CAIPro
cessorO
bject

CAIPro
cessorO
bject

2
4

aisSetO
bjectPo
sition(p
oint3f&
)

CAIPro
cessorO
bject

IAIProc
essable
Object

Interface - Set the game
object's new position

2
5

aisSetO
bjectPo
sition(A
ICompo

IAIProc
essable
Object

CTriang
leGame
Object

Implementation - Set the
game object's new
position

362

nent::po
int3f&)

B - 1.2.3.2.1.1.1.1.2 UTick AI2 System
Type: public UUseCase U
Package: Tick

Tick the artificial intelligence component. Causes objects to rotate. Not a very complex
AI system.

Game System Obj ect & Obj ect
Management System

(Data)

AI System 2

This Graphics system when ticked causes
the game objects to be drawn in 2D as a
sprite.

The simple design is NOT presented as THE DESIGN TO USE for
this architecture. It is merely a simple implementation of this
archi tecture.

Name: Design: T ick AI2 System (Component Sequence)
Author: Jeff Plummer
Version: 1.0
Created: 11/8/2004 1:35:05 PM
Updated: 11/8/2004 2:47:17 PM

//T ick AI2 System

//Get views of AI2 objects

//Get AI2 Objects in View

//Calculate AI2 Behavior

//Get Object Orientation

//Process AI2

//Update Object Orientation

Figure 153 : Design: Tick AI2 System (Component Sequence)

Design: Tick AI2 System (Component Sequence) Messages

I
D

Messag
e

From
Object

To
Object

Notes

1 //Tick
AI2
System

Game
System

AI
System
2

Tick the AI2 Component

363

2 //Get
views
of AI2
objects

AI
System
2

Object
&
Object
Manage
ment
System
(Data)

Get an list of AI views to
process. Views contain
some context, and a list
of objects.

3 //Get
AI2
Objects
in View

AI
System
2

Object
&
Object
Manage
ment
System
(Data)

Get the list of AI2
processable objects in the
view.

4 //Calcul
ate AI2
Behavi
or

AI
System
2

AI
System
2

The AI2 component will
then calculate the
behavior of the object it
is going to process.

5 //Get
Object
Orientat
ion

AI
System
2

Object
&
Object
Manage
ment
System
(Data)

Get the objects
orientation data.

6 //Proces
s AI2

AI
System
2

AI
System
2

Rotate the object

7 //Updat
e
Object
Orientat
ion

AI
System
2

Object
&
Object
Manage
ment
System
(Data)

Update the object's
orientation using the new
data.

364

Game System AI2 System Object System

:CDemoApplication

(from Tick AI2 Objects)

«interface»
:IAI2System

(from Tick AI2 Objects)

:CAI2System

(from Tick AI2 Objects)

«interface»
:IAI2Obj ectSystem

(from Tick AI2 Objects)

:CDemoGameObj ectSystem

(from Tick AI2 Objects)

:CAI2View Processor

(from Tick AI2 Objects)

«interface»
:IAI2View

(from Tick AI2 Objects)

Create a new view processor i f thi s
view does not yet have an AI2 View
Processor attached.

«interface»
:IAI2SceneManager

(from Tick AI2 Objects)

:CDemoObj ectSceneManager

(from Tick AI2 Objects)

«interface»
:IAI2ProcessableObj ect

(from Tick AI2 Objects)

:CAI2ProcessorObj ect

(from Tick AI2 Objects)

:CTriangleGameObj ect

(from Tick AI2 Objects)

Create AI2 Object
Processor Object i f
necessary.

Name: Design: T ick AI2 System (Class-Interface Sequence)
Author: Jeff Plummer
Version: 1.0
Created: 11/8/2004 1:23:28 PM
Updated: 11/8/2004 2:32:50 PM

This AI system when ticked causes the game
objects to bounce around the screen.

The simple design is NOT presented as T HE DESIGN TO USE for
th is archi tecture. It is merely a simple implementation of thi s
architecture.

:CDemoMainView

(from Tick AI2 Objects)

tickAISystem(tDiff)

ti ckAI2System(tDiff)

IAI2ViewIterator*:= a i2sGetAI2Views()

AI2Component::IAI2ViewIterator*:= ai2sGetAI2Views()

ai2sAssignAI2ViewProcessor(viewProc)

AI2Component::IAI2ViewProcessor*:= a i2sGetAI2ViewProcessor()

CAIViewProcessor(pView)

aisAssignAIViewProcessor(viewProc)

aisAssignAIViewProcessor(viewProc)

processView()

IAISceneManager*:= a isGetSceneManager()

AIComponent::IAISceneManager*:= a isGetSceneManager()

IAIObjectIterator*:= a isGetAIProcessableObjects()

AIComponent::IAIObjectIterator*:= a isGetAIProcessableObjects()

IAIProcessorObject*:= a isGetAIProcessorObject()

IAudioProcessorObject*:= asGetAudioProcessorObject()

CAIProcessorObject(pObject)

aisAssignAIProcessorObject(procObj)

aisAssignAIProcessorObject(procObj)

processAIObject()

point3f:= ai sGetObjectPosi tion()

AIComponent::point3f:= ai sGetObjectPosi tion()

//Calculate new position

aisSetObjectPosition(pos)

aisSetObjectPosition(pos)

Figure 154 : Design: Tick AI2 System (Class-Interface Sequence)

Design: Tick AI2 System (Class-Interface Sequence) Messages

I
D

Messag
e

From
Object

To
Object

Notes

1 tickAIS
ystem(f
loat)

 Interface - Tick the AI
system.

2 tickAI2
System(
float)

 Implementation - Tick
the AI2 System.

3 ai2sGet
AI2Vie
ws()

 Interface - Get Views of
AI2 objects to process...
This prototype only
contains one view.

4 ai2sGet
AI2Vie
ws()

 Implementation - Get
Views of AI2 objects to
process... This prototype
only contains one view.

5 ai2sAss
ignAI2
ViewPr
ocessor
(IAI2Vi

 Interface - Get the AI2
View Processor if it
exists.

365

ewProc
essor*)

6 ai2sGet
AI2Vie
wProce
ssor()

 Implementation - Get the
AI2 View Processor if it
exists.

7 CAIVie
wProce
ssor(IA
IView*
)

 Create a view processor if
this view does not yet
have one - i.e. this is our
first time processing this
view.

8 aisAssi
gnAIVi
ewProc
essor(I
AIView
Process
or*)

 Interface - Assign the
view processor to the
view.

9 aisAssi
gnAIVi
ewProc
essor(A
ICompo
nent::I
AIView
Process
or*)

 Implementation - Assign
the view processor to the
view.

1
0

process
View()

 AI Process the view

1
1

aisGetS
ceneMa
nager()

 Interface - Get the
Scenemanager (structured
list of objects to process)

1
2

aisGetS
ceneMa
nager()

 Implementation - Get the
Scenemanager (structured
list of objects to process)

1
3

aisGetA
IProces
sableOb
jects()

 Interface - Get Ordered
list of objects to process.

1
4

aisGetA
IProces
sableOb
jects()

 Implementation - Get
Ordered list of objects to
process.

1
5

aisGetA
IProces

 Interface - Get the AI
object processor

366

sorObje
ct()

responsible for
processing this object.

1
6

asGetA
udioPro
cessorO
bject()

 Implementation - Get the
AI object processor
responsible for
processing this object.

1
7

CAIPro
cessorO
bject(I
AIProc
essable
Object*
)

 Create AI Object
Processor Object if
necessary.

1
8

aisAssi
gnAIPr
ocessor
Object(
IAIProc
essorOb
ject*)

 Interface - Assign the
processor object to the
game object.

1
9

aisAssi
gnAIPr
ocessor
Object(
IAIProc
essorOb
ject*)

 Implementation - Assign
the processor object to
the game object.

2
0

process
AIObje
ct()

 Perform AI Processing on
this object

2
1

aisGetO
bjectPo
sition()

 Interface - Get the game
object's position.

2
2

aisGetO
bjectPo
sition()

 Implementation - Get the
game object's position.

2
3

//Calcul
ate new
position

2
4

aisSetO
bjectPo
sition(p
oint3f&
)

 Interface - Set the game
object's new position

2 aisSetO Implementation - Set the

367

5 bjectPo
sition(A
ICompo
nent::po
int3f&)

game object's new
position

B - 1.2.3.2.1.1.1.1.3 UTick Graphics 3D System
Type: public UUseCase U
Package: Tick

Draws objects as 3D objects

Game System Obj ect & Obj ect
Management System

(Data)

Graphics 3D System

This Graphics system when ticked causes
the game objects to be drawn in 2D as a
sprite.

T he simple design is NOT presented as THE DESIGN TO USE for
this architecture. It is merely a simple implementation of this
archi tecture.

Name: Design: T ick Graphics3DSystem (Component Sequence)
Author: Jeff Plummer
Version: 1.0
Created: 10/19/2004 5:05:32 PM
Updated: 11/8/2004 2:47:17 PM

//T ick Graphics3D System

//Get Views of Graphics3D Objects

//Get Graphics3D Objects in View

Process Graphics3D Object

//Get Graphics3D Data

//Draw Object

//Update Screen Coordinates

Figure 155 : Design: Tick Graphics3DSystem (Component Sequence)

Design: Tick Graphics3DSystem (Component Sequence) Messages

I
D

Messag
e

From
Object

To
Object

Notes

368

1 //Tick
Graphic
s3D
System

Game
System

Graphic
s 3D
System

Tick the Graphics3D
Component.

2 //Get
Views
of
Graphic
s3D
Objects

Graphic
s 3D
System

Object
&
Object
Manage
ment
System
(Data)

Get an list of Graphics3D
views to process. Views
contain some context, and
a list of objects.

3 //Get
Graphic
s3D
Objects
in View

Graphic
s 3D
System

Object
&
Object
Manage
ment
System
(Data)

Get the list of
Graphics3D processable
objects in the view.

4 Process
Graphic
s3D
Object

Graphic
s 3D
System

Graphic
s 3D
System

5 //Get
Graphic
s3D
Data

Graphic
s 3D
System

Object
&
Object
Manage
ment
System
(Data)

Get data like position,
graphics resources, etc. to
draw.

6 //Draw
Object

Graphic
s 3D
System

Graphic
s 3D
System

7 //Updat
e
Screen
Coordin
ates

Graphic
s 3D
System

Object
&
Object
Manage
ment
System
(Data)

The graphics3D engine
updates screen coordinate
data in case other
componentes use that
data.

369

Gam e System Graphics3D Component Object System

:CDemoApplication

(from Tick Graphics 3D System)

«interface»
:IGraphics3DSystem

(from Tick Graphics 3D System)

:CGraphics3DSystem

(from Tick Graphics 3D System)

«interface»
:IGraphics3DObj ectSystem

(from Tick Graphics 3D System)

:CDemoGameObj ectSystem

(from Tick Graphics 3D System)

:CGraphics3DView Processor

(from Tick Graphics 3D System)

«interface»
:IGraphics3DView

(from Tick Graphics 3D System)

Create a new view processor if this
view does not yet have an Graphics3D
View Processor attached.

«interface»
:IGraphics3DSceneManager

(from Tick Graphics 3D System)

:CDemoObj ectSceneM anager

(from Tick Graphics 3D System)

«interface»
:IGraphics3DProcessableObj ect

(from Tick Graphics 3D System)

:CGraphics3DProcessorObj ect

(from Tick Graphics 3D System)

:CTriangleGameObj ect

(from Tick Graphics 3D System)

Create Graphics3D
Object Processor Object
i f necessary.

Nam e: Design: T ick Graphics3D System (Class-Interface Sequence)
Author: Jeff Plumm er
Version: 1.0
Created: 11/8/2004 1:50:13 PM
Updated: 11/8/2004 3:16:51 PM

The sim ple design is NOT presented as T HE DESIGN T O USE for
this archi tecture. It is merely a sim ple im plem entation of this
architecture.

:CDemoM ainView

(from Tick Graphics 3D System)

This Graphics system when ticked causes
the game objects to be drawn in 2D as a
sprite.

gs3dT ickGraphics3DSystem (tDi ff)

gs3dTickGraphics3DSystem(tDiff)

IGraphics3DViewIterator*:= gs3dGetGraphicsViews()

Graphics3DComponent::IGraphics3DViewIterator*:=
gs3dGetGraphicsViews()

IGraphics3DViewProcessor*:= gs3dGetGraphics3DViewProcessor()

Graphics3DCom ponent::IGraphics3DViewProcessor*:=
gs3dGetGraphics3DViewProcessor()

CGraphics3DViewProcessor(pView,pOgreViewport,pOgreCamera,
pOgreExtSceneMgr)

gs3dAssignGraphics3DViewProcessor(viewProc)

gs3dAssignGraphics3DViewProcessor(viewProc)

processView()

IGraphics3DSceneM anager*:=
gs3dGetSceneM anager()

Graphics3DCom ponent::IGraphics3DSceneManager*:=
gs3dGetSceneM anager()

IGraphics3DObjectIterator*:=
gs3dGetVisibleGraphics3DObjects()

Graphics3DCom ponent::IGraphics3DObjectIterator*:=
gs3dGetVisibleGraphics3DObjects()

IGraphics3DProcessorObject*:= gs3dGetGraphics3DProcessorObject()

Graphics3DComponent::IGraphics3DProcessorObject*:=
gs3dGetGraphics3DProcessorObject()

CGraphics3DProcessorObject(obj ,
pSceneManagerConnector)

gs3dAssignGraphics3DProcessorObject(procObj)

gs3dAssignGraphics3DProcessorObject(procObj)

IStringIterator*:= gs3dGetGraphics3DResources()

Graphics3DComponent::IStringIterator*:=
gs3dGetGraphics3DResources()

//Create 3D Enti ty

processGraphics3DObject(cam era,ProcessFlags)

point3f:= aisGetObjectPosi tion()

Graphics3DComponent::point3f&:=
gs3dGet3DObjectLocation()

point4f&:=
gs3dGet3DObjectOrientationAsQuaternion()

Graphics3DComponent::point4f&:=
gs3dGet3DObjectOrientationAsQuaternion()

//Update Graphics 3D Data in processor

Figure 156 : Design: Tick Graphics3D System (Class-Interface Sequence)

Design: Tick Graphics3D System (Class-Interface Sequence) Messages

I
D

Messag
e

From
Object

To
Object

Notes

1 gs3dTic
kGraphi
cs3DSy
stem(fl
oat)

 Interface - Tick the
Graphics3D system.

2 gs3dTic
kGraphi
cs3DSy
stem(fl
oat)

 Implementation - Tick
the Graphics3D System.

3 gs3dGe
tGraphi
csView
s()

 Interface - Get Views of
Graphics3D objects to
process... This prototype
only contains one view.

4 gs3dGe
tGraphi
csView
s()

 Implementation - Get
Views of Graphics3D
objects to process... This
prototype only contains

370

one view.
5 gs3dGe

tGraphi
cs3DVi
ewProc
essor()

 Interface - Get the
Graphics3D View
Processor if it exists.

6 gs3dGe
tGraphi
cs3DVi
ewProc
essor()

 Implementation - Get the
Graphics3D View
Processor if it exists.

7 CGraph
ics3DV
iewProc
essor(I
Graphic
s3DVie
w*,
Ogre::V
iewport
*,
Ogre::C
amera*,
Ogre::C
Externa
lScene
Manage
r*)

 Create a view processor if
this view does not yet
have one - i.e. this is our
first time processing this
view.

8 gs3dAs
signGra
phics3
DView
Process
or(IGra
phics3
DView
Process
or*)

 Interface - Assign the
view processor to the
view.

9 gs3dAs
signGra
phics3
DView
Process
or(Grap
hics3D

 Implementation - Assign
the view processor to the
view.

371

Compo
nent::I
Graphic
s3DVie
wProce
ssor*)

1
0

process
View()

 Graphics3D Process the
view

1
1

gs3dGe
tScene
Manage
r()

 Interface - Get the
Scenemanager (structured
list of objects to process)

1
2

gs3dGe
tScene
Manage
r()

 Implementation - Get the
Scenemanager (structured
list of objects to process)

1
3

gs3dGe
tVisible
Graphic
s3DObj
ects()

 Interface - Get Ordered
list of objects to process.

1
4

gs3dGe
tVisible
Graphic
s3DObj
ects()

 Implementation - Get
Ordered list of objects to
process.

1
5

gs3dGe
tGraphi
cs3DPr
ocessor
Object(
)

 Interface - Get the
Graphics3D object
processor responsible for
processing this object.

1
6

gs3dGe
tGraphi
cs3DPr
ocessor
Object(
)

 Implementation - Get the
Graphics3D object
processor responsible for
processing this object.

1
7

CGraph
ics3DPr
ocessor
Object(
IGraphi
cs3DPr
ocessab

 Create Graphics3D
Object Processor Object
if necessary.

372

leObjec
t*,
Ogre::C
Externa
lScene
Manage
r*)

1
8

gs3dAs
signGra
phics3
DProce
ssorObj
ect(IGr
aphics3
DProce
ssorObj
ect*)

 Interface - Assign the
processor object to the
game object.

1
9

gs3dAs
signGra
phics3
DProce
ssorObj
ect(Gra
phics3
DComp
onent::I
Graphic
s3DPro
cessorO
bject*)

 Implementation - Assign
the processor object to
the game object.

2
0

gs3dGe
tGraphi
cs3DRe
sources
()

 Interface - Get the
Graphics3D Resource
information required to
draw the object in 3D.

2
1

gs3dGe
tGraphi
cs3DRe
sources
()

 Implementation - Get the
Graphics3D Resource
information required to
draw the object in 3D.

2
2

//Create
3D
Entity

 Create the entity using
OGREs resource
manager.

2
3

process
Graphic

 Perform Graphics3D
Processing on this object

373

s3DObj
ect(IGr
aphics3
DCame
ra*,
unsigne
d int)

2
4

aisGetO
bjectPo
sition()

 Interface - Get the game
object's position.

2
5

gs3dGe
t3DObj
ectLoca
tion()

 Implementation - Get the
game object's position.

2
6

gs3dGe
t3DObj
ectOrie
ntation
AsQuat
ernion()

 Interface - Get the game
object's orientation

2
7

gs3dGe
t3DObj
ectOrie
ntation
AsQuat
ernion()

 Implementation - Get the
game object's orientation

2
8

//Updat
e
Graphic
s 3D
Data in
process
or

 Update the OGRE
graphics entity in the
processor.

B - 1.2.3.2.1.1.1.1.4 UTick Graphics System
Type: public UUseCase U
Package: Tick

Draws objects as 2D sprite

374

Game System Graphics Obj ect & Obj ect
Management System

(Data)

This Graphics system when ticked causes
the game objects to be drawn in 2D as a
sprite.

The simple design is NOT presented as THE DESIGN T O USE for
this architecture. It is merely a simple implementation of this
archi tecture.

Name: Design: T ick Graphics System (Component Sequence)
Author: Jeff Plummer
Version: 1.0
Created: 12/22/2003 11:35:25 PM
Updated: 11/8/2004 2:45:36 PM

//T ick Graphics System

//Get Views of Graphics Objects

//Get Graphics Objects in View

//Process Graphics Object

Get Graphics Data

//Draw Object

//Update Screen Coordinates

Figure 157 : Design: Tick Graphics System (Component Sequence)

Design: Tick Graphics System (Component Sequence) Messages

I
D

Messag
e

From
Object

To
Object

Notes

1 //Tick
Graphic
s
System

Game
System

Graphic
s

Tick the 2D graphics
component.

2 //Get
Views
of
Graphic
s
Objects

Graphic
s

Object
&
Object
Manage
ment
System
(Data)

Get an list of Graphics
views to process. Views
contain some context, and
a list of objects.

3 //Get
Graphic
s
Objects
in View

Graphic
s

Object
&
Object
Manage
ment
System
(Data)

Get the list of Graphics
processable objects in the
view.

375

4 //Proces
s
Graphic
s Object

Graphic
s

Graphic
s

5 Get
Graphic
s Data

Graphic
s

Object
&
Object
Manage
ment
System
(Data)

Get data like position,
graphics resources, etc. to
draw.

6 //Draw
Object

Graphic
s

Graphic
s

7 //Updat
e
Screen
Coordin
ates

Graphic
s

Object
&
Object
Manage
ment
System
(Data)

The graphics engine
updates screen coordinate
data in case other
componentes use that
data.

Game System Graphics Component Object System

:CDemoApplication

(from Tick Graphics System)

«interface»
:IGraphicsSystem

(from Tick Graphics System)

:CGraphicsSystem

(from Tick Graphics System)

«interface»
:IGraphicsObjectSystem

(from Tick Graphics System)

:CDemoGameObjectSystem

(from Tick Graphics System)

:CGraphicsView Processor

(from Tick Graphics System)

«interface»
:IGraphicsView

(from Tick Graphics System)

Create a new view processor i f thi s
view does not yet have an Graphics
View Processor attached.

«interface»
:IGraphicsSceneManager

(from Tick Graphics System)

:CDemoObjectSceneManager

(from Tick Graphics System)

«interface»
:IProcessableGraphicsObject

(from Tick Graphics System)

:CGraphicsProcessorObject

(from Tick Graphics System)

:CTriangleGameObject

(from Tick Graphics System)

Create Graphics Object
Processor Object i f
necessary.

Name: Design: T ick Graphics System (Class-Interface Sequence)
Author: Jeff Plummer
Version: 1.0
Created: 11/8/2004 2:46:26 PM
Updated: 11/9/2004 1:45:03 PM

T he simple design is NOT presented as T HE DESIGN T O USE for
this archi tecture. It is merely a simple implementati on of thi s
architecture.

:CDemoMainView

(from Tick Graphics System)

This Graphics system when ticked causes
the game objects to be drawn in 2D as a
sprite.

«interface»
:I2DSpriteGraphicsObject

(from Tick Graphics System)

«interface»
I2DGraphicsObj ect

gsT ickGraphicsSystem(tDiff)

gsT ickGraphicsSystem (tDi ff)

IGraphicsViewIterator*:= gsGetGraphicsViews()

GraphicsComponent::IGraphicsViewIterator*:= gsGetGraphicsViews()

IGraphicsViewProcessor*:= gsGetGraphicsViewProcessor()

GraphicsComponent::IGraphicsViewProcessor*:= gsGetGraphicsViewProcessor()

CGraphicsViewProcessor(pView,pScreen)

gsAssignGraphicsViewProcessor(viewProc)

gsAssignGraphicsViewProcessor(viewProc)

processView()

IGraphicsSceneManager*:= gsGetSceneManager()

GraphicsComponent::IGraphicsSceneManager*:= gsGetSceneManager()

IGraphicsObjectIterator*:= gsGetGraphicsObjects()

GraphicsComponent::IGraphicsObjectIterator*:= gsGetGraphicsObjects()

IGraphicsProcessorObject*:= gsGetGraphicsProcessorObject()

GraphicsComponent::IGraphicsProcessorObject*:= gsGetGraphicsProcessorObject()

CGraphicsProcessorObject(pObject)

gsAssignGraphicsProcessorObject(procObj)

gsAssignGraphicsProcessorObject(procObj)

IStringIterator*:= gsGetGraphicsResources()

GraphicsComponent::IStringIterator*:= gsGetGraphicsResources()

//Create 2D Spri te

drawGraphicsObject()

point2f&:= gsGetWorldPosition()

GraphicsCom ponent::point2f&:= gsGetWorldPosition()

point2d&:= gsCurrentImageOffsetInResource()

GraphicsCom ponent::point2d&:= gsGetImageOffsetInResource()

//Draw the object using SDL

Figure 158 : Design: Tick Graphics System (Class-Interface Sequence)

Design: Tick Graphics System (Class-Interface Sequence) Messages

376

I
D

Messag
e

From
Object

To
Object

Notes

1 gsTick
Graphic
sSyste
m(float)

 Interface - Tick the
Graphics system.

2 gsTick
Graphic
sSyste
m(float)

 Implementation - Tick
the Graphics System.

3 gsGetG
raphics
Views()

 Interface - Get Views of
Graphics objects to
process... This prototype
only contains one view.

4 gsGetG
raphics
Views()

 Implementation - Get
Views of Graphics
objects to process... This
prototype only contains
one view.

5 gsGetG
raphics
ViewPr
ocessor
()

 Interface - Get the
Graphics View Processor
if it exists.

6 gsGetG
raphics
ViewPr
ocessor
()

 Implementation - Get the
Graphics View Processor
if it exists.

7 CGraph
icsView
Process
or(IGra
phicsVi
ew*,
SDL_S
urface*
)

 Create a view processor if
this view does not yet
have one - i.e. this is our
first time processing this
view.

8 gsAssig
nGraphi
csView
Process
or(IGra
phicsVi

 Interface - Assign the
view processor to the
view.

377

ewProc
essor*)

9 gsAssig
nGraphi
csView
Process
or(Grap
hicsCo
mponen
t::IGrap
hicsVie
wProce
ssor*)

 Implementation - Assign
the view processor to the
view.

1
0

process
View()

 Graphics Process the
view

1
1

gsGetS
ceneMa
nager()

 Interface - Get the
Scenemanager (structured
list of objects to process)

1
2

gsGetS
ceneMa
nager()

 Implementation - Get the
Scenemanager (structured
list of objects to process)

1
3

gsGetG
raphics
Objects
()

 Interface - Get Ordered
list of objects to process.

1
4

gsGetG
raphics
Objects
()

 Implementation - Get
Ordered list of objects to
process.

1
5

gsGetG
raphics
Process
orObjec
t()

 Interface - Get the
Graphics object processor
responsible for
processing this object.

1
6

gsGetG
raphics
Process
orObjec
t()

 Implementation - Get the
Graphics object processor
responsible for
processing this object.

1
7

CGraph
icsProc
essorOb
ject(IPr
ocessab
leGraph

 Create Graphics Object
Processor Object if
necessary.

378

icsObje
ct*)

1
8

gsAssig
nGraphi
csProce
ssorObj
ect(IGr
aphicsP
rocesso
rObject
*)

 Interface - Assign the
processor object to the
game object.

1
9

gsAssig
nGraphi
csProce
ssorObj
ect(Gra
phicsCo
mponen
t::IGrap
hicsPro
cessorO
bject*)

 Implementation - Assign
the processor object to
the game object.

2
0

gsGetG
raphics
Resourc
es()

 Interface - Get the
Graphics Resource
information required to
draw the object in 2D.

2
1

gsGetG
raphics
Resourc
es()

 Implementation - Get the
Graphics Resource
information required to
draw the object in 2D.

2
2

//Create
2D
Sprite

 Create the entity using
SDL to manage sprites.

2
3

drawGr
aphicsO
bject()

 Perform Graphics
Processing on this object

2
4

gsGetW
orldPos
ition()

 I2DGra
phicsOb
ject

Get the position of the 2D
object

2
5

gsGetW
orldPos
ition()

I2DGra
phicsOb
ject

 Get the 2D objects
position in the world

2
6

gsCurre
ntImage
OffsetI

 Interface - Get the sprite
offset in the 2D image

379

nResou
rce()

2
7

gsGetI
mageOf
fsetInR
esource
()

 Implementation - Get the
sprite offset in the 2D
image

2
8

//Draw
the
object
using
SDL

 Use SDL to blit the sprite

B - 1.2.3.2.1.1.1.1.5 UTick Prototype Game System
Type: public UUseCase U
Package: Tick

This design dependent use case represents the process of ticking all the domain-specific
components to create the game behavior.

380

B - 1.2.4 Component View

User Interface Physics
Component

Netw orkAudio Artificial
Intelligence

Graphics 3D
System

Object &
Object

Management
System (Data)

Graphics

Game System

«external»
OGRE

Graphics
Engine

AI System 2

Name: Prototype Component Model
Author: Jeff Plummer
Version: 1.0
Created: 9/6/2004 2:52:58 PM
Updated: 11/8/2004 4:09:47 PM

Figure 159 : Prototype Component Model

B - 1.2.4.1.1.1.1.1.1 UAI System 2
Type: public UComponent U
Package: Component View

This component is the AI2 System DLL that when attached to the object component
performs rotation AI on the objects.

B - 1.2.4.1.1.1.1.1.2 UArtificial Intelligence
Type: public UComponent U
Package: Component View

This component is the AI System DLL that when attached to the object component
performs movement AI on the objects.

B - 1.2.4.1.1.1.1.1.3 UAudio
Type: public UComponent U
Package: Component View

This component is the Audio System DLL that when attached to the object component
performs sound processing on the objects.

B - 1.2.4.1.1.1.1.1.4 UGame System
Type: public UComponent U
Package: Component View

381

Represents the master game system EXE file.

B - 1.2.4.1.1.1.1.1.5 UGraphics
Type: public UComponent U
Package: Component View

This component is the Graphics System DLL that when attached to the object component
draws the objects in 2D.

B - 1.2.4.1.1.1.1.1.6 UGraphics 3D System
Type: public UComponent U
 Implements: IGraphics3DSystem.
Package: Component View

This component is the Graphics System DLL that when attached to the object component
draws the objects in 3D.

B - 1.2.4.1.1.1.1.1.7 UNetwork
Type: public UComponent U
Package: Component View

This component is the Network System DLL that when attached to the object component
performs network processing on the objects.

B - 1.2.4.1.1.1.1.1.8 UObject & Object Management System (Data)
Type: public UComponent U
 Implements: IGraphics3DObjectSystem.
Package: Component View

The Game Objects and Object Management System.

B - 1.2.4.1.1.1.1.1.9 UOGRE Graphics Engine
Type: public «external» UComponent U
Package: Component View

The OGRE (www.ogre3d.org) graphics engine was used in the prototype, and actually
provides some proof that it is not difficult to integrate an existing graphics engine into
this architecture.

382

B - 1.2.4.1.1.1.1.1.10 UPhysics Component
Type: public UComponent U
Package: Component View

This component is the Physics System DLL that when attached to the object component
performs physics calculations on the objects.

B - 1.2.4.1.1.1.1.1.11 UUser Interface
Type: public UComponent U
Package: Component View

This component is the User Interface System DLL that when attached to the object
component allows UI listening objects to exist.

	LIST OF FIGURES
	INTRODUCTION
	Motivation
	The current Approach and Its Shortcomings
	The Migration to COTS
	Not a Game Engine

	High Level Objectives and Goals
	Architectural Requirement: Support COTS-Based Development
	Architectural Requirement: Better Knowledge Localization
	Architectural Requirement: Flexibility / Modifiability
	Architectural Requirement: Expandability / Maintainability
	Performance and Other Quality Attributes are NOT Requirement

	Contributions

	LITERATURE REVIEW
	Current State of Game Development in Literature
	The Latest Book Trends in Game Development
	The First and Only Real Attempt at Game Architecture
	Software Architecture

	THESIS METHODOLOGY
	Analysis of Games as Software Systems
	Selecting Games to Analyze
	Existing Game Genres
	Further Refinement – Isolate Important Properties

	The Selected Games for Analysis
	Analyzing the Games
	Analyzing Starcraft™ Requirements with Use-Cases
	Understanding the Sub-System Interaction

	Identify Candidate Architectural Styles
	Layered
	Data-Centered
	Independent Components
	Data Flow
	System of Systems

	Architecture Design
	Choosing a Topology
	Layered Architectural Style
	Data Flow Architectural Style
	Data Centered Architectural Style
	Independent Components Architectural Style
	System of Systems

	Making the Topology Choice
	Choosing a Style of Communication
	Repository
	Blackboard
	Making the Communications Choice

	Synchronicity
	Synchrous at the Object Level
	Batch Synchronization
	Hybrid Synchronization
	Making the Synchronicity Choice

	The Idea – System of Systems Philosophy

	THE PROPOSED ARCHITECTURE (and a Simple Design)
	The Data-Centered System of Systems Topology
	Architecture – System Communication
	Architecture – Synchronization
	Architecture – Distributed Synchronization
	Architectural Features / Architectural Requirements
	Support for COTS-Based Development
	Better Knowledge Localization
	System Flexibility / Modifiability
	System Expandability / Maintainability

	A Simple Design
	Potential Design: System Communication / Interaction
	Potential Design Cont.: Attaching Systems at Compile Time
	Potential Design Cont.: System Communication
	Potential Design Cont.: Observer Pattern to Achieve Localiza

	ARCHITECTURE VALIDATION
	Taking the Reference Games to the Design Level
	Applying the Design
	Evaluating the results of applying the design

	Developing a Prototype
	Prototype High Level Design
	Component Selection
	The Object Data

	Prototype Detailed Design
	Component Interfaces
	Domain-specific System – Object System Interactions
	Connecting Domain System to the Object System
	“Ticking” the Domain-specific System

	Prototype Evaluation

	RESULTS
	Summary
	Conclusions – Meeting The Architectural Requirements
	Support COTS-Based Development
	Better Knowledge Localization
	Flexibility / Modifiability
	Expandability / Maintainability
	The Performance Concern

	Important Considerations
	Design is Critical
	Central Object Management System = VERY different
	Think about the Data

	Future Research
	Can this Architecture Work for Massively Multiplayer Online
	Design: Domain-specific Component Connection to the Object M
	Design: No More Interfaces to Access Object Data (If perform
	Architecture Inside the Components
	What is messaging overhead for independent component style
	The Architectural Tradeoff Analysis Method

	Works Cited
	APPENDIX A - GAME ANALYSES
	Game Analysis
	Game Analysis - Use Case and Dynamic View
	Player
	System
	System (Ticked)

	Modules
	Game Data
	Game Logic
	Technology Modules
	AI
	Audio
	Graphics
	Network
	Physics
	User Interface

	Starcraft
	Use Cases
	Startup
	Select Multi-Player Game
	Select Single Player Game

	Options Menu
	End Mission
	Get Help
	Get Mission Objective
	Load Game
	Modify Options
	Return To Game
	Save Game

	Play Starcraft
	Attack Unit
	Change Map Display Area
	Gather Resources
	Give unit an order
	Move to Location
	Research Technology
	Select Object
	Building construct Unit
	Give Building an order
	Hold Position
	Manipulate Object Resources
	Manipulate Player Resources
	Modify Doable Commands
	Patrol Location
	Stop Movement
	Unit Construct Building

	Design: Tick Starcraft System
	Tick Starcraft Game System
	Tick AI System
	Tick AI System
	Navigate Map - Pathfinding
	Attack
	Calculate AI State
	Calculate Next Movement
	Calculate unit action
	Execute Map Watcher

	Tick Audio System
	Tick Audio System

	Tick Graphics System
	:IGraphicsObjectSystem
	Update View Object
	Tick Graphics System
	Update View
	Update Main View
	Draw Main View Objects
	Draw Main View Terrain
	Update All Views
	Update Command Button View
	Update Mini Map View
	Update Protrait View
	Update Status View

	Tick Network Component
	Broadcast local objects TO server
	Tick Network System
	Update objects FROM server

	Tick Object Component
	Tick Object System / Game Logic
	Update Commander Object
	Update Controlled Object

	Tick UI Component
	Process Keyboard
	Process Mouse
	Tick User Interface

	Unreal Tournament
	Use Cases
	Play Unreal Tournament
	Collect Ammo
	Collect Health
	Collect Item
	Collect Weapon
	Jump
	Move
	Rotate
	Shoot

	Design: Tick
	System (Ticked)
	Tick Physics Component
	Tick AI System
	Tick Audio Component
	Tick Graphics 3D Component
	Note
	Tick Network Component
	Tick Unreal Tournament Game System

	Tick AI System
	Tick Unreal Tournament Game System
	System (Ticked)
	Note
	Tick AI System
	Tick Player
	Tick Projectile

	Tick Audio Component
	Tick Audio Component

	Tick Graphics 3D Component
	Tick Graphics 3D Component
	Update All Graphical Views
	Update Character Status Overlay
	Update GUI Overlays
	Update Main Play View
	Update Team Score Overlay
	Update Weapon/Ammo Overlay

	Tick Network Component
	Broadcast Local Objects TO Server
	Tick Network Component
	Update Local Objects FROM Server

	Tick Object Component
	Tick Object Component

	Tick Physics Component
	Calculate Collision Reaction
	Detect Collisions
	Tick Physics Component

	APPENDIX B – PROTOTYPE DESIGN
	Prototype
	Analysis View
	Logical Architecture
	Object Interfaces
	GameObject
	AI2Object
	IAIObject
	IGraphics2DObject
	IGraphics3DObject

	Logical View
	Programming Utilities Library
	Systems
	AI System
	AI Component - Implementation
	AI Exported Classes
	Root

	Private AI System Implementation
	CAISystem
	CAIProcessorObject
	CAIViewProcessor

	AI Component - Interfaces
	AI Interfaces Object System Can Use To Communicate With AI S
	IAIProcessorObject
	IAISystem
	IAIViewProcessor

	AI Interfaces The Object System Implements
	IAICapableObject
	IAIObjectSystem
	IAIProcessableObject
	IAISceneManager
	IAIView

	AI2System
	AI2 Component - Implementation
	AI2 Exported Classes
	Root

	Private AI2 System Implementation
	CAI2System
	CAI2ProcessorObject
	CAI2ViewProcessor

	AI2 Component - Interfaces
	AI2 Interfaces Object System Can Use To Communicate With AI2
	IAI2ProcessorObject
	IAI2System
	IAI2ViewProcessor

	AI2 Interfaces The Object System Implements
	IAI2CapableObject
	IAI2ObjectSystem
	IAI2ProcessableObject
	IAI2SceneManager
	IAI2View

	Game Object System
	Game Object Component - Implementation
	Game Object Component Exported Classes
	Root

	Private Game Object Component Implementation
	CDemoCamera
	CDemoGameObjectSystem
	CDemoMainView
	CDemoObject
	CDemoObjectSceneManager
	CDemoViewBaseClass
	CTriangleGameObject

	Data Structures
	demoPoint2i
	demoPoint3f
	demoRect

	Game Object Component - Interfaces
	IObjectSystem

	Component Attachings

	Game System
	CDemoApplication

	Graphic 3D System
	Graphics3DComponent - Implementation
	Exported Classes
	Root

	Private Graphics3D System Implementation
	CGraphics3DProcessorObject
	CGraphics3DSystem
	CGraphics3DViewProcessor

	Graphics3DComponent - Interfaces
	Interfaces the Object System can use to communicate with the
	IGraphics3DProcessorObject
	IGraphics3DSystem
	IGraphics3DViewProcessor

	Interfaces The Object System Implements
	IGraphics3DCamera
	IGraphics3DCapableObject
	IGraphics3DObjectSystem
	IGraphics3DProcessableObject
	IGraphics3DSceneManager
	IGraphics3DView

	Graphics 2D System
	Graphics Component - Implementation
	Exported Classes
	Root

	Private Graphics System Implementation
	CGraphicsProcessorObject
	CGraphicsSystem
	CGraphicsViewProcessor

	Graphics Component - Interfaces
	Interfaces Object System Can Use To Communicate With Graphic
	IGraphicsProcessorObject
	IGraphicsSystem

	Interfaces The Object System Implements
	I2DGraphicsCamera
	I2DGraphicsObject
	I2DSpriteGraphicsObject
	IGraphicsCamera
	IGraphicsCapableObject
	IGraphicsObjectIterator
	IGraphicsObjectSystem
	IGraphicsSceneManager
	IGraphicsView
	IGraphicsViewIterator
	IProcessableGraphicsObject

	Utility Includes
	CStdStr
	IIterator
	VectorBasedIteratorTemplateClass

	Dynamic View
	Initialize
	Initialize AI2 System
	Initialize AI System
	Initialize Graphics 3D System
	Initialize Graphics System
	Initialize Object System
	Initialize Game System

	Tick
	Tick AI System
	Tick AI2 System
	Tick Graphics 3D System
	Tick Graphics System
	Tick Prototype Game System

	Component View
	AI System 2
	Artificial Intelligence
	Audio
	Game System
	Graphics
	Graphics 3D System
	Network
	Object & Object Management System (Data)
	OGRE Graphics Engine
	Physics Component
	User Interface

