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Abstract

The current availability of high-performance computing has given rise to the era of

digital signal processing. This paper will outline the design of a software radio receiver

which combines high speed analog to digital conversion with digital signal processing

techniques to demodulate radio-frequency signals.
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1 Introduction

As an electo-magnetic wave moves past a conductor, it causes the electrons in the wire to

oscillate and produce a measurable voltage at points within the wire. The frequency of this

oscillation is what is called a signal’s frequency.

Most radio receivers use analog circuitry to downconvert the signal to a lower frequency

which is audible to the human ear, then demodulates the signal into intelligible speech.

A software defined radio receiver, on the other hand, works by directly measuring the

voltage present in the conductor (this conductor, by the way, is called an antenna) with an

analog to digital converter (ADC) and quantizing it as an integer relative to a fixed voltage

reference.

Through a process called sampling, voltage samples are collected at a high rate (in the

case of the design detailed herein, at a rate of 20MHz).

2 Sampling Theory

2.1 What is sampling?

Sampling is the process of digitizing a signal by recording discrete samples of the signal’s

amplitude at specific points in time. If done right, a signal can be captured and perfectly

reconstructed without losing any information.

2.2 The rules

Like any good theory, the sampling theory is bound by a few conditions.

One of the first conditions is that the signal we are digitizing be band-limited. This means

that we must guarantee that the frequncies contained in the input signal fall within a certain

range - or bandwidth. This is accomplished by the use of a filter (usually a low-pass filter)
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which allows certain frequencies to pass, and drops others.

It turns out that any non-sinosoudial waveform is comprised of an infinite series of sine

and cosine functions oscillating at different frequencies. A square wave, for example, contains

harmonics that are much higher in frequncy than the fundamental wave. Removing these

components can alter the shape of a wave, so its important to take this into accont when

calculating the bandwidth.

The next condition says that if we sample a signal fast enough, we won’t lose any infor-

mation. But how fast is fast enough?

Eq (1), known as the Nyqist Rate Equation, tells us that our sampling rate must be

twice as fast as the bandwidth of the signal we want to digitize (in a simple case, highest

frequency we’re going to sample).

Eq (1) fs = 2fbw

To see why Nyquist’s equation is true, consider what would happen if we ignored it, and

sampled the following signals at a rate of 4 MHz.
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The 1 MHz wave would be sampled properly, but the 5 MHz wave would not. Notice

that if the sample points were at 0µs, .25µs, .50µs, .75µs and 1µs, the samples will be the

same for both signals. As a result, the 5 MHz signal will not appear to be a 5 MHz signal,

but rather as an alias at 1 MHz, right on top of the real 1 MHz signal. This is bad for

business. Two signals on top of each other are worthless, because you can’t tell them apart,

and can’t accurately do any processing with them.
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If we wanted to use both signals we’d need to up the sample rate to at least 10 MHz, but

if only one was of concern, we’d have a few options.

If we used a low-pass filter with a cutoff of 2 MHz, (half of the sampling rate), the 5 MHz

signal would be filtered out and the 1 MHz signal could be digitized properly.

But what if we were concerned with the 5 MHz signal? As long as the passband we care

about is less than 2 MHz, we should be able to do it. Suppose we install a bandpass filter

that passes signals from 4 to 6 MHz through, and drops all others. The effects of aliasing

suddenly turn in our favor. Because we can predict exactly where the alias will appear,

and because we’ve made sure no other signals will collide with that alias, we can effectively

downconvert the 4 to 6 MHz passband to 0 to 2 MHz.

In either case, we’re limiting the bandwidth as prescribed by Eq (1). The band-limiting

filter, incidentally, is called an anti-aliasing filter, because it prevents the appearance of

aliases in the sampled data.

2.3 But mommy, there’s holes in the signal!

It’s probably occurred to you by now that despite the fact that an analog signal varies

continuously in infinitely small variations of amplitude over infinitely small increments of

time, I’ve claimed that we can capture and reconstruct a signal with a finite number of

discrete samples without any loss of information. How could I have the gall to claim such a

thing? By capturing only discrete steps of the signal, it seems certain that something must

have been left out, or that there are ”holes” in the signal.

I must admit the concept that we haven’t lost anything is a bit counterintuitive, but my

claim is actually quite real. Consider what would happen if we took a 10 kHz sine wave, and

sampled it at 40 kHz.
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It would appear from this example that we’ve lost a part of our signal. It definitely looks

inferior to the original waveform (dotted line), and the effect of the digitization is obvious.

How is it then that we have not lost any information?

The original signal is a sine wave and the digitized version looks like a sort of stair-

steppy squareish wave. In any case, it certainly doesn’t look like perfect recovery. Remember

though, that the input signal was band limited at half the sampling rate. The square wave is

composed of many sine waves, one at the fundamental frequency (10kHz), and several higher

frequency components - one at the sampling frequency (40kHz), one at every harmonic of the

sampling frequency (80kHz, 120kHz, etc.), and the sum and difference of the fundamental

and the sampling frequency and each of its harmonics. The overall effect is the occurrence

positive and negative images of the frequencies in the Nyquist range centered around each

of the harmonics of the sampling frequency.

All of the harmonics have one thing in common - they’re all outside of the allowable

range for the original signal, so it’s easy to determine that they aren’t supposed to be there.

If the same band-limiting filter (now called an anti-imaging filter instead of an anti-aliasing

filter) is applied to the output as was applied to the input, the extraneous components are

removed and all that’s left is the original 10kHz sine wave, perfectly recovered. Cool, huh?

5



3 Modulation Theory

If all radio signals were just simple sine waves, they would not be terribly useful. You’d be

severely limited in your ability to communicate, in that you’d be able to communicate two

states - on or off. Once upon a time, all radio communication was actually done in this way.

It was called Morse Code, and it worked pretty well in its day, but it hardly stacks up to

the advanced communication modes of late.

Information is carried on waves by different forms of modulation. There are many different

forms of modulation, but all of them work by modifying one or more of three properties of

a carrier wave; frequency, phase, and amplitude.

3.1 Amplitude Modulation

One of the simplest forms of modulation, called Amplitude Modulation, puts an audio signal

on a radio-frequency signal by varying the amplitude of the carrier. The following illustration

gives a pretty clear picture of this simple concept.
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3.2 Traditional AM Demodulation

A electronic circuit, shown below in its absolute simplest form, can reverse this process -

seperating out the audio from an AM modulated radio signal.
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A nearby radio transmitter will cause a voltage in the antenna wire. The tunable LC

circuit will cause all signals except the one on the resonant frequency to be shorted to ground,

so they will not be demodulated. This forms a rudimentary filter which allows the tuning

of a specific station. The signal that is tuned-in will look like the AM modulated signal in

section 3.1.

The average voltage is 0 volts, as the signal is symmetrical with respect to the x-axis.

By passing the signal through the diode shown in the circuit above, it’s as if the bottom

half of the waveform was chopped off (a diode allows current to flow in only one direction).

Once the signal is aymmetrical with respect to the x-axis, the voltage is not 0 and it is not

constant. It varies exactly as the audio signal used to modulate the wave, and is then sent

into the earphone (we can ignore the bumpiness of because it’s way beyond hearing range,

or, if we feel like being espescially elegant, we could filter out the radio-frequency component

with a small capacitor, which looks like a conductor at high frequencies, but an insulator at

low ones).

Before we can go any further, we must leave modulation for a minute to explain a
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particular method of sampling, critical to digital signal processing.

3.3 Quadrature Sampling

If you remember what we said about modulation just a moment ago, there are three prop-

erties of a wave that can be used to convey information; phase, frequency (rate of change

of phase), and amplitude. A stream of individual discrete samples is great for storing and

recalling analog information, for example, a CD player, or computer soundcard. A single dis-

crete sample, however, fails to tell much about any of the three quantities we’re so concerned

with, which is why a technique called quadrature sampling is employed in DSP applications.

The idea behind quadrature sampling is to use two sets of samples which are 90 degrees out

of phase with each other. By pairing each in-phase sample with a quadrature sample (90

degrees later) we can determine the instantaneous amplitude and phase of a signal from any

one sample by using simple trigonometry.

3.4 Demodulating AM in Software

In order to demodulate an AM signal in software, we need to find the amplitude of the carrier

wave. The amplitude is what carries the voice information on an AM signal. Below I derive

the math for finding the amplitude.

The in-phase component, I, can be expressed as

I = msinφ

where m is the amplitude of of the wave, and φ cycles from 0 to 2π at the carrier frequency.

A cosine function shifted 90 degrees is equal to a sine function, so the quadrature com-

ponent Q can be written

Q = mcosφ
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To find m start by adding the squares of I and Q.

I2 + Q2 = m2cos2φ + m2sin2φ = m2(cos2φ + sin2φ)

Remember that Pythagoras said that cos2θ + sin2θ = 1, so,

I2 + Q2 = m2

Take the square root of both sides, and voila!

m =
√

I2 + Q2

4 System Setup

In this section I describe the configuration I used, both the GnuRadio software and the

hardware I used for my experimentation with software defined radio technology.

4.1 Hardware

There were two main pieces of hardware used in my project (besides the computer itself).

First and foremost was a large wire antenna, 102 feet in length, strung between two trees at

my residence. The antenna was fed with coaxial cable, which ran from the antenna, inside

my house to my computer.

The computer was outfitted with a PCI-DAS4020 data acquisition card supplied free of

charge by Measurement Computing. The Measurement Computing card has an analog to

digital converter which samples at 20 MHz. The antenna was connected directly to the input

of the data acquisition card and the RF voltages on the antenna were measured.

4.2 Software Configuration

The GnuRadio package was used as a platform for experimentation with software radio.

The GnuRadio codebase is organized into many logical modular pieces of code which can be

assembled together into a processing chain. The topology of the processing chain determines
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what function the software radio will perform. In my case, it was fairly straightforward.

Data was captured from the data acquisition card, decimated into I and Q and downmixed

to a 0 Hz center, filtered so that only one signal was being processed (not every AM station

at once), demodulated, filtered and decimated again, and written to the sound card.

4.3 Data Capture

Two methods were used to capture data from the data acquisition card. The first, and

simplest, is a command line utility which collects data from the card at writes it to a file.

The data can later be read out of the file and processed. This method has some serious

limitations, however. Each sample is 12 bits long, and is stored as a 16-bit integer (there

are no 12-bit datatypes). At a sampling rate of 20 MHz, that is 40 MB of data per second!

This exceeds the sustained write capability of most hard drives, so data must be collected

into RAM. With 512 MB of RAM, this limits capture to about 10 seconds worth.

The other method of data capture is to capture the data directly into the program

doing signal processing. This way, the data does not have to be written to disk because

it is captured and processed in real time. This functionality is provided by a data source

object which communicates with the data acquisition board and can be connected to other

processing blocks.

4.4 Fast Fourier Transform

The Fast Fourier Transform, a type of Discrete Fourier Transform, is a powerful digital signal

processing tool. It transforms a signal in the time domain into the frequency domain. This

can be used for many purposes. In my case, I used it to help me visualize signals at various

stages in the processing chain by plotting the output of an FFT onto a display.

Below is the output of an FFT plot which ranges from 0 to 10 MHz. The peaks show
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strong radio signals. The large cluster to the left of the plot shows the American AM

broadcast band. The peaks over the rest of the spectrum are from shortwave broadcasting

stations, some domestic, and others based elsewhere around the globe.

4.5 Digital Filters

Digital filtering is very important to a software defined radio system. Digital filters, just

like analog filters, drop signal of certain frequencies while allow others to pass unattenuated.

Filters are used in my project to seperate out a single radio station from an entire 10 MHz

section of spectrum (the bandwidth allowed by Nyquist equation).

Filters also will decimate the sample data. The bandwidth allowed to pass through

a filter is often considerably smaller than the range of signals going into a filter. After

filtering is performed, the sampling rate is often far faster than is necessary. Decimation

combines samples together to lower the sampling rate, which means less data to process, so

less CPU time is used. There is no loss of information here (as long as Nyquist’s rules are
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followed). The other reason for reducing the sampling rate is so the data can be written to

the sound card for output. The soundcard supports only a few sampling rates, like 32 kHz,

for example. So, the original sampling rate of 20 MHz must be reduced to 32 kHz by the

end of the processing chain in order to be ouput.

4.6 Decimating Into Quadrature

The data acquisition card does not perform quadrature sampling on its own. A special

processing block transforms the one dimensional set of samples into a two dimensional set

by pairing up sets of samples and reducing the overall sampling rate. The same processing

block also performs a transform with shifts a particular frequency to 0 Hz. This is necessary

so that all other signals can be filtered out.

The following figure depicts a filtered and shifted AM broadcast signal. The carrier is

the peak in the center, and the audio energy is in the sidebands.

13



4.7 Demodulation

The demodulation math is another processing block. It uses the math outlined in section

3.4. I wrote my own version of this block, which is contained in the appendix of this paper.

5 Appendix

5.1 am demod.cc

/*

* File: am_demod.cc

* Program that uses GNURadio libraries to demodulate

* AM signals.

*

* Date: 11/7/2003

* (c) 2003 Ben Gelb

*

*/

#include <make_GrMC4020Source.h>

#include <GrFFTAvgSink.h>

#include <GrFFTSink.h>

#include <VrFixOffset.h>

#include <GrFreqXlatingFIRfilterSCF.h>

#include "GrAMDemod.h" //AM Demodulator Code

#include <GrFIRfilterFSF.h>

#include <VrAudioSink.h>

#include <VrConnect.h>

#include <VrMultiTask.h>

#include <VrGUI.h>

#include <gr_firdes.h>

#include <gr_fir_builderF.h>

#include <VrNullSink.h>

#include <VrFileSource.h>

#include <getopt.h>

const int inputRate = 20000000; // input sample rate from PCI-DAS4020/12

float Freq = 1.5e6;
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const int chanTaps = 75;

const int CFIRdecimate = 125;

const float chanGain = 2.0;

const float demodGain = 6000;

const int RFIRdecimate = 5;

const int audioTaps = 50;

const float audioGain = 1.0;

const int demodRate = inputRate / CFIRdecimate;

const int audioRate = demodRate / RFIRdecimate;

int main (int argc, char **argv)

{

float f;

VrGUI *guimain = 0;

VrGUILayout *horiz = 0;

VrGUILayout *vert = 0;

guimain = new VrGUI(argc, argv);

horiz = guimain->top->horizontal();

vert = horiz->vertical();

cin >> f; //read in desired frequency in kHz.

Freq = f*1000.0;

cerr << "Center Frequency: " << Freq << endl;

cerr << "Input Sampling Rate: " << inputRate << endl;

cerr << "Complex FIR decimation factor: " << CFIRdecimate << endl;

cerr << "AM Demodulator Sampling Rate: " << demodRate << endl;

cerr << "Real FIR decimation factor: " << RFIRdecimate << endl;

cerr << "Audio Sampling Rate: " << audioRate << endl;

VrSource<short> *source;

// --> short

source = make_GrMC4020SourceS(inputRate, MCC_CH2_EN | MCC_ALL_1V);
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// short --> short

VrFixOffset<short,short> *offset_fixer = new VrFixOffset<short,short>();

// build channel filter

vector<float> channel_coeffs =

gr_firdes::low_pass (1.0,// gain

inputRate,// sampling rate

5e3, //low pass cutoff

50e3,// width of transition band

gr_firdes::WIN_HAMMING);

cerr << "Number of channel_coeffs: " << channel_coeffs.size () << endl;

// short --> VrComplex

GrFreqXlatingFIRfilterSCF *chan_filter =

new GrFreqXlatingFIRfilterSCF (CFIRdecimate, channel_coeffs, Freq);

// VrComplex --> float

GrAMDemod<float> *demod = new GrAMDemod<float>(demodGain);

// float --> short

double width_of_transition_band = audioRate / 32;

vector<float> audio_coeffs =

gr_firdes::low_pass (1.0,// gain

demodRate,// sampling rate

8e3, // low-pass cutoff freq

width_of_transition_band,

gr_firdes::WIN_HAMMING);

cerr << "Number of audio_coeffs: " << audio_coeffs.size () << endl;

GrFIRfilterFSF *audio_filter = new GrFIRfilterFSF (RFIRdecimate, audio_coeffs);

VrSink<VrComplex> *fft_sink1 = 0;

VrSink<float> *fft_sink2 = 0;

VrSink<short> *fft_sink3 = 0;

// whole passband spectral display

VrSink<short> *band_scope = new GrFFTAvgSink<short>(vert, 0, 80, 512);

// sink1 is channel filter output
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fft_sink1 = new GrFFTSink<VrComplex>(vert, 0, 80, 512);

// sink2 is fm demod output

fft_sink2 = new GrFFTSink<float>(vert, 0, 120, 512);

// sink3 is audio output

fft_sink3 = new GrFFTSink<short>(horiz, 0, 120, 512);

VrSink<short> *final_sink = new VrAudioSink<short>();

//connect the modules together

NWO_CONNECT (source, band_scope);

NWO_CONNECT (source, offset_fixer);

NWO_CONNECT (offset_fixer, chan_filter);

NWO_CONNECT (chan_filter, demod);

NWO_CONNECT (chan_filter, fft_sink1);

NWO_CONNECT (demod, audio_filter);

NWO_CONNECT (demod, fft_sink2);

NWO_CONNECT (audio_filter, final_sink);

NWO_CONNECT (audio_filter, fft_sink3);

VrMultiTask *m = new VrMultiTask ();

m->add (band_scope);

m->add (fft_sink1);

m->add (fft_sink3);

m->add (fft_sink2);

m->add (final_sink);

m->start ();

guimain->start ();

while (1){

guimain->processEvents(10 /*ms*/);

m->process();

}

}

5.2 GrAMDemod.h

/*

* File: GrAMDemod.h
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* Code to find the magnitude of I an Q, thus demodulating AM.

* The math was supplied by me (Ben Gelb) but this code is based

* on VrQuadratureDemod.h in src/pspectra/lib/vrp/.

*

* Date: 11/7/2003

* (c) 2003 Ben Gelb

*/

#ifndef _GRAMDEMOD_H_

#define _GRAMDEMOD_H_

#include <VrHistoryProc.h>

#include <math.h>

template<class oType>

class GrAMDemod : public VrHistoryProc<complex,oType> {

protected:

float gain;

public:

virtual const char *name() { return "GrAMDemod"; }

void setGain(float g){ gain = g; return;}

virtual int work(VrSampleRange output, void *o[],

VrSampleRange inputs[], void *i[]);

virtual void initialize();

GrAMDemod(oType g);

GrAMDemod();

};

template<class oType> int

GrAMDemod<oType>::work(VrSampleRange output, void *ao[],

VrSampleRange inputs[], void *ai[])

{

complex **i = (complex **)ai;

oType **o = (oType **)ao;

complex product,val;

complex lastVal = *i[0]++;

unsigned int size=output.size;

for (; size>0; i[0]++,size--) {

val = *i[0];

//My ONE line addition to this code
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//I is thre real component, J is the imaginary component

//find the magnitude

*o[0]++=(oType)(gain * sqrt(real(val)*real(val)+imag(val)*imag(val)));

}

return output.size;

}

template<class oType> void

GrAMDemod<oType>::initialize()

{

history=2;

}

template<class oType>

GrAMDemod<oType>::GrAMDemod(oType g)

: VrHistoryProc<complex, oType>(1), gain(g)

{

}

#endif

5.3 adc rx.py

from GnuRadio import *

import wx

import fftsink

import os

import eng_notation

import slider_control

from math import pi

class rx_FlowGraph (gr_FlowGraph):

def __init__ (self):

gr_FlowGraph.__init__ (self)

self.rx_freq = 1.5e6 #initial frequency

self.sample_rate = 20e6 #sampling rate

#define a filter to carve out a 20kHz (or so) "channel" centered around the rx_freq

#this filter "decimates" by a factor of 125, which means that it averages groups

#of 125 samples together, reducing the overall sampling rate. It also uses this

#process to create I and Q components so the signal can be demodulated using
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#quadrature techniques.

self.channel_coeffs = gr_firdes_low_pass ( 1.0,

self.sample_rate,

20e3,

100e3,

gr_firdes.WIN_HAMMING)

self.filter = GrFreqXlatingFIRfilterSCF ( 125,

self.channel_coeffs,

self.rx_freq);

def set_rx_freq (self, freq):

self.rx_freq=freq

self.filter.setCenterFreq(freq)

def set_audio_amp (self, amp):

self.amp = amp

def set_vol (self, vol):

self.amp.setGain(vol/1000.0)

def get_rx_freq (self):

return self.rx_freq

def get_sampling_rate (self):

return self.sample_rate

def build_graph (win_parent):

fg = rx_FlowGraph ()

sample_rate = fg.get_sampling_rate()

src = make_GrMC4020SourceS (sample_rate, MCC_CH2_EN | MCC_ALL_1V) #this is the ADC card - the source of data

dst, win = fftsink.makeFFTSinkC (fg, win_parent, "FFT", 512, 160e3) #define an FFT window to displa signal on frequency domain

demod = GrMagnitudeCF() #this function demodulates AM by finding the magnitude of the vector formed by I and Q

# demod = GrSSBModCF(-2*pi*(300+3e3/2)/160e3,1)
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#define a secondary filter that selects a single station out of the 20kHz passband

channel_coeffs = gr_firdes_low_pass (1.0, 160e3, 6e3, 1e3, gr_firdes.WIN_HAMMING)

audio_filter = GrFIRfilterCCF(5, channel_coeffs)

amp = VrAmpFF(.001) #used to keep from overdriving the speakers

fg.set_audio_amp(amp)

output = GrAudioSinkF (1, "/dev/dsp") #put stuff in the soundcard

#connect the pieces together!

#source (ADC board)->20kHz filter->6kHz filter->demodulator->output amp (attenuator)->sink (soundcard)

fg.connect (src, fg.filter)

fg.connect (fg.filter, dst) #connects the FFT plot

fg.connect (fg.filter, audio_filter)

fg.connect (audio_filter, demod)

fg.connect (demod, amp)

fg.connect (amp, output)

return (fg, win)

# radio code really stops here. GUI the rest of the way down.

# -------------------------------------------------------------------

if __name__ == ’__main__’:

def str_to_float (str):

return float (str)

class TestPanel (wx.Panel):

def __init__ (self, parent, frame):

wx.Panel.__init__ (self, parent, -1)

self.frame = frame

vbox = wx.BoxSizer (wx.VERTICAL)

self.fg, fft_win = build_graph (self)

vbox.Add (fft_win, 1, wx.EXPAND)

hbox = wx.BoxSizer (wx.HORIZONTAL)
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hbox.Add (1, 1, 1, wx.EXPAND)

hbox.Add (wx.StaticText (self, -1, "Set Rx Freqency: "), 0, wx.ALIGN_CENTER)

self.tc_freq = wx.TextCtrl (self, -1, "", style=wx.TE_PROCESS_ENTER)

hbox.Add (self.tc_freq, 0, wx.ALIGN_CENTER)

hbox.Add (1, 1, 1, wx.EXPAND)

self.vol = wx.Slider(self, 192, 0,0,500, wx.DefaultPosition, wx.Size(250, -1), wx.SL_HORIZONTAL | wx.SL_LABELS)

hbox.Add (self.vol, 0, wx.ALIGN_CENTER)

hbox.Add(1,1,1,wx.EXPAND)

vbox.Add (hbox, 0, wx.EXPAND)

self.sizer = vbox

self.SetSizer (self.sizer)

self.SetAutoLayout (True)

self.sizer.Fit (self)

wx.EVT_CLOSE (self, self.OnCloseWindow)

wx.EVT_TEXT_ENTER (self, self.tc_freq.GetId(), self.EvtTextEnter)

wx.EVT_COMMAND_SCROLL (self, self.vol.GetId(), self.EvtVolAdj)

self.UpdateStatusBar ()

def UpdateStatusBar (self):

rx_freq = self.fg.get_rx_freq ()

msg = "RX Frequency: %s" % (eng_notation.num_to_str(rx_freq))

self.frame.GetStatusBar().SetStatusText (msg, 0)

def EvtVolAdj(self, event):

self.fg.set_vol(event.GetInt())

def EvtTextEnter(self, event):

str = event.GetString ()

self.tc_freq.Clear ()

self.fg.set_rx_freq (eng_notation.str_to_num (str))

self.UpdateStatusBar ()

def OnCloseWindow (self, event):

self.fg.stop ()

self.Destroy ()
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class MainFrame (wx.Frame):

def __init__ (self):

wx.Frame.__init__(self, None, -1, "MC4020 HF Receiver")

self.CreateStatusBar ()

mainmenu = wx.MenuBar ()

menu = wx.Menu ()

menu.Append (200, ’E&xit’, ’Get outta here!’)

mainmenu.Append (menu, "&File")

self.SetMenuBar (mainmenu)

wx.EVT_MENU (self, 200, self.OnExit)

self.panel = TestPanel (self, self)

wx.EVT_CLOSE (self, self.OnCloseWindow)

def OnCloseWindow (self, event):

self.Destroy ()

def OnExit (self, event):

self.Close (True)

class TestApp (wx.App):

def OnInit(self):

print "TestApp: pid = ", os.getpid ()

frame = MainFrame ()

frame.Show (True)

self.SetTopWindow (frame)

print "FlowGraph: ", frame.panel.fg

frame.panel.fg.start ()

return True

app = TestApp (0)

app.MainLoop ()

# ----------------------------------------------------------------
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