
An Investigation of Chaos Theory Using
Supercomputing Techniques

TJHSST Computer Systems Lab 2006 - 2007
Bryan Ward

Introduction

Chaos theory is the study of dynamic systems in
which small differences in the environment, can
create large, unpredictable results. The classic
example of chaos theory is the Butterfly effect, or
the theory that a butterfly flapping it's wings can
effect large scale weather patterns such as
tornadoes and hurricanes even from hundreds of
miles away. Chaos Theory is also applicable in
systems other than weather, such as the stock
market and physics. While these are very complex
systems, there are chaotic mathematical systems
represented by fractal images which this project
aims to investigate. In this project distributed
computing will be used to investigate the these
fractals.

Results

MPI was used to distribute the computational
load to multiple processors. The slave processors
then calculated the pixel values and sent the
resulting array back to the master to be written to
the file (See Pseudo Code). When passing
messages between multiple processors, time is
spent in communication. This explains why the
overall speed for twelve processors is not twelve
times faster than one.

In this project I was also able to investigate
different coloring and rendering algorithms and
their performance in a distributed computing
environment. The use of the Hue – Saturation –
Value color space was used in these coloring
algorithms. The output of the program was written
to a binary image file for faster write speeds and
smaller data files than ASCII.

1 2 3 4 5 6 7 8 9 10 11 12

0

1

2

3

4

5

6

7

8

9

10

11

Processors v. Processing Time

Time

Number of Processors

T
im

e
 o

f C
a

lc
u

la
tio

n
 (

s)

P
rocessor 0

P
rocessor 1

P
rocessor 2

P
rocessor n

Pseudo Code:
Master:
 for(i = 0;i < num_processors;i++){ //Distribute task
 send(pixel_range);} // to all processors
 for(i = 0;i < num_processors;i++){ //Receive from
 recv(pixel_range);} // from all processors

Slave:
 recv(pixel_range);
 for(i = pixel_start;i < pixel_end;i++){ //Iterate
 pixels[i] =calculate_point(i); // calculate each pt
 send(pixels); //Send the pixel array to the master

t p=
iterations∗n

p
 p−1t datak

Computational time:

