Computer Systems Lab, 2006-2007
Applications of Genetic Algorithms

Harry Beddo
June 7, 2007



Abstract

My main areas of interest within Computer Science are machine
learning and artificial intelligence.
Keywords: genetic algorithms

1 Introduction - Problem Statement and Pur-
pose

The purpose of these programs is to apply genetic algorithms to find solutions
to different problems. Genetic algorithms are a search technique that is used
to find an approximate and sometimes correct answer. Usually the data being
searched through is very large and the GA will be able to find a close answer.
The GA imitates evolutionary biology by using generations of populations
to create better generations until the optimal solution is found.

2 Genetic Algorithms

Genetic Algorithms are search techniques that find approximate solutions to
search problems. The idea of genetic algorithms is inspired by evolutionary
biology, "only the strong survive.” Every individual in the population is made
up of genes. Two individuals are matched in order to mate and exchange
data. The idea is that the offspring of the two parents will be better than
the parents. Through each generation, only the best individuals survive
according to a cost function. The process continues until the population
begins to converge.

3 Procedures

3.1 Creation

The initial population is put into an array consisting of 24 random chromo-
somes. Each chromosome is made up of fourteen random ones and zeros:
the first seven digits refer to the x-coordinate, and the last seven refer to the
y-coordinate. These values refer to discrete values of longitude and latitude
on the map. There is also another array of costs. The values in the cost array



are the elevations at the locations of the corresponding chromosomes. The
cost is negated in order to put it into the form of a minimizing algorithm. A
large initial population will provide the genetic algorithm with a large search
space. Usually, not all of the chromosomes from the initial population will
survive the subsequent steps.

Next, the costs and their associated chromosomes are sorted from least
to greatest. Only twelve chromosomes go through the iteration process. The
top six are kept for each successive round and the bottom six are discarded.
From the initial population, the top six from the original twenty-four are
kept.

3.2 Pairing

The next step in the iteration process is to pair two chromosomes from the six
remaining. There are many different ways the pairing process can be done.
This is the step that I will have to experiment with to see which option is
best. There are three options I will explore. First, is just simply pairing the
first two, second two, and so on. Second, I could randomly select the pairs
based on weights, with the lowest chromosome having the most weight to be
selected as a parent. Third, I could use a tournament style selection. This
style will select a small subset of any chromosome in the population and the
chromosome with the lowest cost function of that subset is chosen.

3.3 Mating

Once the chromosome pairs are determined, the mating process begins. A
crossover point is selected for the two parent chromosomes (pl, p2) to ex-
change bits and form two offspring (01,02). First, pl passes its binary code
from the left of the crossover point to ol. Next, p2 passes its binary code
from the right of the crossover point to ol. Then, pl passes its binary code
from the right of the crossover point to 02 and p2 finally passes its code to
02. This process results in each offspring carrying portions of code from each
parent. The population is doubled from the mating and goes to a size of
twelve.



3.4 Mutation

Mutations then occur in the resulting population. A mutation will change a
single bit from a 1 to a 0 and visa versa. Only .05 of all of the bits in the
population and none from the best chromosome will undergo a mutation. A
larger number of mutations will allow the population to search more outside
the convergence path into new territory, while a smaller number of mutations
converges the population quicker.

3.5 Checking

After the mutations take place, the new costs of the offspring are determined
and the array is sorted again. This process is iterated again until a designated
point. After a certain number of iterations, the population would not change
if it were not for mutations. At this point, the search needs to be stopped and
the current best chromosome should be the location of the highest elevation
point.

3.6 Language and Algorithms

The main algorithms I will be researching is:
1. Genetic Algorithm
Computer language I'll use:

1. Python



4 Applications

Basic Applications using Genetic Algorithms:
1. "Highest Elevation”

In order to find the solution without checking every point in a map,
genetic algorithms are a useful tool. The individuals with the better
characteristics will survive in a population, while those with the worst
will die out. The solution should be found once the population begins
to converge. The highest elevation is not always found but will usually
find a close answer. The advantage to using a gentetic algorithm to
find the solution is that a genetic algorithm will only check a fraction
of the data, while a normal search algorithm has to check all of the
data.

2. "Mary Had a Little Lamb”

Genetic algorithms will be used to learn the first couple measures of the
tune. This is a simple tune with only quarter and half notes. Each note
and the hold will be represented by 3 bits:

000 | hold
001 | A
010 | B
011 | C
100 | D
101 | E
110 | F
11| G

For just the first sixteen notes, there are 2748 possibilities (2.8147 *
10°14). The genetic algorithm will try to find the answer without
having to check each of these possibilities. There are two different cost
functions that can be used to find the solution. The first would be for
the computer to count the number of errors between the current notes
and the solution. The other solution would be to play the notes and
have a human rank the notes by their ear.

3. "Word Guess”

In the word guess program, genetic algorithms are used to guess a cor-
rect 8-letter word. A simple search would look at all the possibilities

5



(26°8 or 2.088%10°11). A GA will only search a fraction of those pos-
sibilities to find the solution. Another purpose of this program is to
distinguish between the choosing of two different cost functions. One
cost function is the sum of the squares of the distance between the
letters and the true answer. The other cost function is to simply give
a one to an incorrect letter and a zero to a correct letter. The latter
cost function tends to have parents with more correct letters than the
former cost function.

5 Discussion

These three programs written were small examples of how genetic algorithms
could be used. Future explorations of genetic algorithms could include sim-
ulations of a virus spreading throughout a population or traffic flow in a city
with traffic lights. Each of these examples have a large set of possiblities that
could be searched through with a genetic algorithm easily. The overall pur-
pose of these programs was to find the optimal solutions without evaluating
all the pieces of data. If working correctly, each program should only have
evaluated a fraction of the total data available and given a result exactly or
close to the solution.

References

[1] Haupt, Randy L., and Sue Ellen Haupt. ”"The Binary Genetic Algo-
rithm.” Practical Genetic Algorithms. 2nd ed. Hoboken, New Jersey:
Wiley-Interscience, 2004. 27-50.



