TJHSST Senior Research Project
Implementation of Steganographic Techniques
2006-2007

Danny Friedheim
June 11, 2007

Abstract

Steganography, the idea of hiding messages and data within other pieces of
data, can be useful in many real-world applications alongside encryption and
other code-writing methods. This project looks at the method of steganog-
raphy known as least significant bit substitution, in which the pieces of a
message are hidden within the actual binary data of a computer file. This
particular application uses WAVE audio files as the carrier file, and allows
messages of (practically) any length to be hidden within the sound data. The
sound file itself looks identical and sounds the same to the human ear, so the
existence of the message is very difficult to detect.

Introduction

This project implements a common steganographic technique known as least
significant bit substitution. Steganography has many real-world applications
in covert operations and communication. The development of an unde-
tectable steganographic algorithm would be a huge breakthrough in the field
and would have many implications. With this project, I propose to work
towards that, starting with text messages in WAVE files.

Background

Steganography is the science of hiding data in a way that only the recipient
knows of its existence. This differs from cryptography, where the existence
of the data is known, but it is not readable. The process of steganography
can be achieved with various algorithms designed to undetectably doctor an
image, audio file, or other type of file. There is already a diverse field of
research about steganography and its various applications in communicat-
ing secret messages. Commercial and open source programs that implement
steganographic techniques include Stealth, stego, Wnstorm, Snow, FFencode,
and many more. One example of an individual algorithm is the F5 technique
for embedding messages in JPEG images. The algorithm changes the values
of randomly generated bits by a very small amount, and is virtually unde-
tectable by statistical analysis.

This project seeks to design a new program that works flawlessly to embed
messages within WAVE audio files. The implications are that messages could
be sent inside a file through a monitored path, and could even be intercepted.
Without this same program on the receiving end however, a third party could
not easily extract the message.

Development

This project uses an implementation of the least significant bit substitution
algorithm to hide text messages within WAVE audio files. The result is a
command-line program in C++ that acts as both the insertion and extrac-
tion mechanism. The program is run initially with a WAVE file and a text
message as input, and it outputs a doctored WAVE file with the message
hidden inside it. Then, the program is run with just the doctored file as the
input, and the message is extracted and displayed. Therefore, different users
who each have a copy of the program would be able to encode and decode
each other’'s WAVE files. However, without the program, it becomes very dif-
ficult to even determine the presence of a hidden message, let alone extract it.

A few limitations were taken into account before implementing the algo-
rithm. The most major restriction was time, because I knew I only had a
few months to work with. This affected which goals I set and ultimately the
final program, as some things had to be simplified to be finished in time.
Another limitation was memory, but this ended up not coming into play.
The algorithm is very fast and reasonably efficient, so memory was not a
real limitation in actual implementation. However, if the program were to
expand and start encoding extremely long messages within very large WAVE
files, more efficient memory management might be necessary.

For this project, WAVE audio files were chosen as the carrier files because
of their relative ubiquity on the Internet and their simple method of checking
results (listening for differences in files before and after message insertion).
Another possibility would have been JPEG images, but there has been ex-
tensive research done in this area already.

The actual method of inserting messages within the WAVE filesknown as
least significant bit substitutionis a relatively simple concept. It runs on the

principle that if the least significant bit (or byte in this case) is overwritten
with new data, the change will be undetectable to the human ear, yet will
allow storage of data within the audio file. This program first stores an in-
teger in the WAVE file header describing the length of the message being
inserted. Then it goes through each sample of audio data in the file (4 bytes
at a time) and overwrites the first byte with a character of the message text.
The result is a working WAVE audio file only 4 bytes bigger in size (due to
storage of the message length) with a text message cleverly hid within the
data. In this project, the message can be either a short string written on the
command-line at runtime or a text file containing a longer message.

The process of message extraction is essentially the opposite of insertion.
First it looks at the length of the message (stored in the file header). With
that information, it knows how far into the data to look for characters of the
message. The first of each group of 4 bytes is recorded until the length has
been reached, signaling that the complete message has been discovered.

Each of these methods is contained within a single C4++ program. They
can be accessed using command-line arguments such as (-i) for inserting a
message and (-x) for extraction.

The success of the algorithm is confirmed in a few different ways. First
of all, the existence of a message within the doctored file can simply be
proved by running the extraction method. This displays the message found
within the file, showing that it is indeed hidden. However, another aspect
that must be confirmed is that the WAVE file still looks and sounds the
same. By playing the files and comparing their sound (by ear) as well as vi-
sually inspecting the waveforms (in an audio editing program), we can ensure
that the doctored files are indistinguishable, at this level, from the originals.

After completing the insertion methods for short, command-line messages
I added a second option; inserting a message from a text file. This allowed
me to test much longer messages and prove that any length of message could
be added as long as there was enough data to cover it. Since each character
of the message is inserted into 4 bytes of the sound data, a message up to
the length of the data divided by 4 can be inserted without error.

~/seniorresearch § ./a.out sample2.wav -12 MESSAGE!
sample2.wav MESSAGE!
RIFFWAVE 424188 WAVE
stereo
sample bit rate 44100
data chunk reached
datasize: 423488
data read successfully
datsize confirmed
datlend423456
message written to output3.wav
~/senlorresearch § ./a.out output3.wav -x2
Message found:
MESSAGE!

Figure 1: Sample program output during insertion and extraction

Discussion

The purpose of the project was to develop a program for insertion (and ex-
traction) of text messages within WAVE audio files. The steganographic
method used, known as least significant bit substitution, has been imple-
mented with no undesirable side effects on the outputted WAVE file. The
outputted file sounds the same as the original and is only 4 bytes bigger in
file size. Therefore, it would be very difficult for an undesirable source to
discover that the file contains a hidden text message. The relatively informal
methods of confirming the success of the program have thus proved it to be
working well. In addition to comparing file sizes before and after insertion
of a message, the sound of the files has also been compared by ear. There
is a slight hiss over the outputted file when a very long message (like the
Declaration of Independence) is embedded in the WAVE file, but for shorter
applications it sounds identical to the original file.

Another way the WAVE files were compared before and after message
insertion was by looking at the actual waveforms of the files in an audio
editing program. The screenshots below show that the original file (break-
beat.wav) is practically identical to the outputted file containing a message
(output3.wav) even on a very small scale. Though I only did visual inspec-
tion to confirm that the file is not being significantly changed by the message,
I found that sufficient to show success of the insertion algorithm.

Throughout the project I had hoped to be able to find a statistical test
that I could run on the program as a form of steganalysis. Steganalysis, es-

File Edit View Project Generate Effect Analyze Help

= | el 2

4 n » | —
Pl k & il Vg B 2 B 3
I 5 A B L 1k
T oo 10 20 30 40 50
[breakbeat [1.0
Stereo, 44100Hz 0s
32 bit float
= .
O E

LOR

Figure 2: Waveform of ”breakbeat.wav” before message insertion

& outpu3
File Edit View Project Generate Effect Analyze Help
——— T
= 7| /]

1 - @, n W
Pler|k Oy B 2 B <
) G I 5] || [
10 oo 10 20 3.0 40 50
[oupuz__~] 10
Steren, 4100Hz| |
32-bit float
Wute | Solo DD'*""* ”’,*} I”"*ﬁ I“}'*&'
- e
@ 05
it @ R

Figure 3: Waveform of ”outputd.wav” with Declaration of Independence
inserted

sentially the opposite of steganography, is the act of attempting to discover
hidden messages in files through statistical calculations and other methods.
Most of the programs that are out there currently deal with JPEG images
and a few other image file types, so I hoped to develop my own statistical
analysis tool to discover files with messages hidden inside. Unfortunately I
was not able to even get a start on this because of time constraints. Thus,
working on it would be a good follow-up project that could deepen the un-
derstanding of steganography and steganalysis.

Conclusion

I have found that the least significant byte substitution method of steganog-
raphy is a valid and reliable method of hiding text messages within WAVE
audio files. However, it would be easy to also expand to include many other
file types as carriers as well.

The success of the algorithm was proved with visual inspection of wave-
forms, comparison of sound files by ear, and by inspection of file sizes of both
the original sound files and the outputted files containing messages. This was
a successful showcase of the power of steganography and the simple applica-
tions that it can have.

On a larger scale, there are even more important applications of stegano-
graphic techniques such as LSB substitution. They are especially useful in
espionage and military field operations because they allow covert communi-
cation to go undetected. These techniques could one day lead to Internet
connections that are almost impossible to crack, without using the tradi-
tional methods of encryption that we all know about already.

Bibliography

e R.J. Anderson, F.A.P. Petitcolas, ”On the limits of steganography”,
Selected Areas in Communications, IEEE Journal on, vol. 16, issue 4,
pp.474-481, 1998.

e T. Aura, "Practical Invisibility in Digital Communication,” Lecture
Notes in Computer Science, Springer-Verlag, Berlin, vol. 1174, 1996,
pp. 265-278.

e G.A. Francia, T.S. Gomez, Steganography obliterator: an attack on
the least significant bits, Proceedings of the 3rd annual conference on
Information security curriculum development, 2006. Pages 85-91.

e J. Fridrich, M. Goljan, D. Hogea, “Steganalysis of JPEG Images: Break-
ing the F5 Algorithm”, Lecture Notes In Computer Science, vol. 2578,
pp- 310-323, 2002.

A. Habes, 4 least Significant Bits Information Hiding Implementation
and Analysis, GVIP 05 Conference, 19-21 December 2005.

N. F. Johnson, S. Jajodia, ”Exploring Steganography: Seeing the Un-
seen”, IEEKE Computer, 1998.

Noto, MP3Stego: Hiding Text in MP3 Files, SANS Institute, Septem-
ber 15, 2001.

K. Rabah, Steganography-The Art of Hiding Data, Information Tech-
nology Journal 3 (3): 245-269, 2004.

