Project Description

Student: Danny Friedheim

Title: Implementation of Steganographic Techniques

Background:

Steganography is the science of hiding data in a way that only the recipient knows of its existence. This differs from cryptography, where the existence of the data is known, but it is not readable. The process of steganography can be achieved with various algorithms designed to undetectably doctor an image, audio file, or other type of file. There is already a diverse field of research about steganography and its various applications in communicating secret messages. This project implements a common steganographic technique known as least significant bit substitution.

Steganography has many real-world applications in covert operations and communication. An agent in the field, equipped with the proper steganography program, could send Top Secret data (embedded in an audio or image file) over an unsecured Internet connection without fear of detection. Any interceptor would only see a regular image or audio file being transferred and would have no way of discovering a message without the proper programs. Clearly the development of an undetectable steganographic algorithm would be a huge breakthrough in the field and would have many implications.

Description:

For this project, WAVE audio files were chosen as the carrier files because of their relative ubiquity on the Internet and their simple method of checking results (listening for differences in files before and after message insertion). Another possibility would have been JPEG images, but there has been extensive research done in this area already.

The actual method of inserting messages within the WAVE files—known as least significant bit substitution—is a relatively simple concept. It runs on the principle that if the least significant bit (or byte in this case) is overwritten with new data, the change will be undetectable to the human ear, yet will allow storage of data within the audio file. This program first stores an integer in the WAVE file header describing the length of the message being inserted. Then it goes through each sample of audio data in the file (4 bytes at a time) and overwrites the first byte with a character of the message text. The result is a working WAVE audio file only 4 bytes bigger in size (due to storage of the message length) with a text message cleverly hid within the data. In this project, the message can be either a short string written on the command-line at runtime or a text file containing a longer message.

The process of message extraction is essentially the opposite of insertion. First it looks at the length of the message (stored in the file header). With that information, it knows how far into the data to look for characters of the message. The first of each group of 4 bytes is recorded until the length has been reached, signaling that the complete message has been discovered.

Each of these methods is contained within a single C++ program. They can be accessed using command-line arguments such as (-i) for inserting a message and (-x) for extraction.

