Learning Traffic Light Simulation

Lynn Jepsen
Computer Systems Lab, 2006-2007

March 30, 2007

Abstract

This project is meant to simulate a busy traffic light. The program
recognize patterns in the intersection and then uses that information
to make the light as efficient as possible. These patterns could be
related to the time of day and/or the day of the week. At first I would
purposely input recognizable patterns and see if the program would
catch it, but eventually the plan would be to possibly use this program
at a real intersection. There are many varibles that the program takes
into account including traffic desnity, number of lanes, etc.
Keywords: traffic simulation, efficiency, cars, red light: stop, green
light: go, pedal to the metal, voom voom, honk

1 Introduction

I want to develop an algorithm that will decrease queue length and wait time
while also increasing green light usage by changing the cycle length and the
ratio of green light time in each direction. In order to see if this algorithm
is working, and gather lots of data very quickly, I built a simulation of a
traffic intersection to test the algorithm on. The simulation follows basic
rules of the road. Each car takes up so much space on the lane, travels so
fast, and has a max acceleration. It is a realistic simulation because it obeys
physical laws as well as human laws. People only travel so fast and do not
peel out of intersections. The data gathered from the intersection are five
separate numbers. First, the traffic density, the number of cars per minute
that pass through one direction. Then, the queue length, maximum wait

1
N

time, and green light usage of the past cycle in the intersection. These are
the efficiency variables. We want to optimize them in order to create an
efficient intersection. To do this the light algorithm chooses an appropriate
cycle length and ratio for green light time in each direction. These factors are
chosen by looking at what happened to the efficiency variables when previous
cycle length and ratios where used on given traffic densities. Once the cycle
is complete we store all five data points so that the light algorithm can use
them again.

2 Background

Traffic lights have always caused problems with traffic flow. If the light has
no information about the intersection it is controlling, then you can sit at
a red light for what seems hours. Even worse is when the light is much to
short and you have to wait through lots of cycles. We have all experienced
this. There has been a lot of research done to try and automate cars, using
GPS, so that they all pass through the intersection harmlessly. However,
this technology can be expensive, and it would take a long time to install
it into all cars in order for the project to work. I think a much cheaper

1.1 1 mEm m
3

and temporary solution would be to fix the traffic lights our society already
has with brand new algorithms that would make the light efficient. In order
to see if this algorithm is working, and gather lots of data very quickly, I
designed a simulation of a traffic intersection to test the algorithm on. This
way | can test pictorially, the aerial view of the intersection, but also graph
the efficiency variables to see general trends.

3 Developments

3.1 Simulation

The first section that I developed was a bsaic simulation of a 4 lane inter-
section. It has no light algorithm. Instead it changes eevry 15 secnods. It
took some time to program in cars that move with realistic speeds and ac-
cerleration. Once I had the entire program working togehter to store the
information that kept track of each car, I made a visual component to show
the intersection. This made it easy to see if cars were indeed acting realis-
tically. I could simply look at the simulation and decide if that is what a
traffic intersection would look like.

3.2 Light Algorithm

The next thing I worked on was the most important part, the light algo-
rithm. The light algorithm is what decides when to change the lights from
red to green in all four directions. In order to do this there are two variable
that must be found. These are cycle length and ratio. Cycle length is how
long it takes the intersection to go through an entire cycle with both sides
having their chance to be green. Ratio is the ratio of green light time in the
north/suoth direction compared to the east/west direction.

I wanted to find the correct variables for the light cycle at each instant on
an intersection that would maximize efficiency. I defined efficiency with three
other variables. They are queue length, wait time, and green light usage.[2]
Each instant on the intersection has one main variable that I cannot effect
with my light algorithm. This is the traffic density. So if we consider traffic
density, cycle length, and ratio to be our independent variables and our
efficiency variables are our dependent variables. The experiment is to change
th cycle length and ratio (because you can’t change traffic density) in order to
optimize efficiency (all three variables). The trick comes is getting all three
efficiency variables optimized at once. At first I made the two functions to
find cycle length and ratio. Cycle length simply took the max wait time in
each direction and added them together. I figured this would give enough
time for lots of cars to get through the intersection. Ratio was decided by
taking the queue length in each direction and dividing. I later changed this
to refelct the optimization better. In the beginning, when there is little data
for the intersection to work off of, it uses the before mentioned functions.
But once it has some information about previous traffic densities and the
cycle length and ratio I used on the intersection in that situation, I will
try and find which combination of cycle length and ratio best optimized all
three variables. Sometime the algorithm compromises to make sure that even
though wait time might have been lowest at this cycle, queue length was much
too high. The intersection continues to compromise and eventually begins
to use similar cycle lengths and ratios. It approaches an optimization after
enough time. Considering that an intersection recieves tons of data every
day, I feel like an algorithm that needs lots of informatino is appropriate for
the situation.

3.3 Graphs

I added another visual component to my program once I had finished my
first draft of the light algorithm. It allows you to graph all three efficiency
variables. This way you can see if the algorithm is really optimizing the
intersection. I made is so that it grapheda north/south line and an east/west
line. The closer the two lines are to each other, the better the optimization.
The intersection can only be so efficient. If there are just too many cars for
the number of lanes, then the algorithm will not work as well as it would in
a lighter traffic density. This is not an exact science. There are too many
variables in effect here. You cant possibly minimize wait time to the point
where no one waits. Traffic flow is just too erratic to predict well.

3.4 Mulitiple Lanes

[updated my simulation to be able to include multiple lanes in any direction.
While this does tend to lighten the traffic density, it has little other effect on
the light algorithm. I did have to increase the yellow light time when there
are too many lanes, because other wise too many cars run red lights. I have
yet to make it so that cars can change lanes, but that is my next task.

4 Results and Discussion

...I will do this once i finish el project...

