Development of a 3D Graphics Engine
Computer Systems Lab, 2006-2007

Kevin Kassing

May 30, 2007



Abstract

Computer users are already familiar with the concept of a two-
dimensional graphical user interface for manipulating and visualizing
data, in the form of text, spreadsheets, and similar documents. Re-
cently, graphics hardware capable of rendering 3D user interfaces in
real time has permeated the consumer desktop market. Numerous
toolkits such as QT, GTK, and Swing exist for the purpose of simpli-
fying the development of widget-based 2D graphics applications, but
programming in three dimensions poses a bigger problem to develop-
ers, as the tools and concepts have been in development for a shorter
period of time. Standards essential to 2D application development,
such as image formats, have no acceptable 3D parallel (geometry is
stored in arbitrary and often poorly documented formats). Tasks that
are simple in 2D, such as detecting whether a mouse click causes a but-
ton to be pushed down become more complex in 3D. The goal of this
project is to simplify the development of three dimensional interface
programming, by creating a less complex way to manage the OpenGL
render state and by making a unified mesh rendering interface.

Keywords: quaternion, shader, particle engine, mesh structure,
material definition, triangle strip

1 Introduction

There are a number of applications which benefit from the added interactiv-
ity of 3D graphics, even despite the lack of a widespread 3D input device.
The most obvious software genre to benefit from 3D graphics is computer
games, but data visualization and simulations for various scientific fields are
greatly aided by the addition of a dimension. The purpose of my project is to
create an engine architecture which will aid the developer in using advanced
graphical techniques and perform basic optimizations without requiring the
developer to know virtually anything about OpenGL. Though I am devel-
oping some features that are primarily of interest to game developers, the
goal is to make the engine useful for other purposes. The API should be sys-
tematic, using descriptive identifiers, and core functions should be optionally
overrideable to allow the developer to optimize and customize as much as
possible.



2 Background

3D graphics engines have been in existence since before dedicated graphics
hardware was available. As realtime 3D rendering became possible on a work-
station level over 10 years ago, developing applications which take advantage
of the added third dimension has become an increasingly popular field. Mod-
ern hardware standardization allows 3D applications to be developed for a
wide user base. The availability or the DirectX and/or OpenGL API on most
desktop platforms simplifies the task of 3D development, but as the power
of modern graphics hardware has increased, so has the effort necessary for
coding. Today’s hardware is sufficiently fast that programs need not have
graphics code tightly embedded for optimization purposes. Well-developed
3D engines allow the developer to shift their focus from the implementation
of 3D graphics and instead focus on interactivity. 3D graphics engines are
available in most programming languages, and may have varying internal
architecture.

While some applications merely take advantage of the added dimension
for the purpose of conveying more information, some strive for realism. Com-
puter games have long benefitted from the ubiquity of computer graphics pro-
cessing capability, and use lighting, textures, materials, and recently, shaders
(which can be used to modify the fixed graphics pipeline for more rendering
capability and flexibility) to achieve suspension of disbelief. Additionally,
water, fog, sky, and precipitation are becoming commonplace in applications
that demand immersive environments. Implementing these effects takes time,
much of which could be saved by using a open source or commercially licensed
graphics engine.

There are a few main tasks that are often the responsibility of a graphics
engine. Most 3D applications will require loading model data from a file,
which is often done by the engine. Animating and rendering these models is
usually performed by the engine, but are sometimes done by the application
itself for optimization purposes. Managing textures and material definitions,
which provide information as the the appearance of polygons, are usually
managed by the engine. Collision detection and, in some cases, kinematics
are accomplished by the engine API. Of course, there should be the option
to bypass the use of these features so that optimizations on the part of the
developer are still possible.

Mesh data is distributed in a wide variety of formats, but most all of them
can be classified into one of two types: vertex and skeletal. Vertex formats



are characterized by the storage of each individual vertex as a point relative
to the origin of the model. For animated models, the vertices are stored for
each frame. Because these vertices are precalculated, they are easy to render
and present greater opportunities for optimization. As a byproduct of storing
all the vertices for every frame, vertex animated models generally require a
lot of memory for highly detailed models. Skeletal models define a hierarchy
of bones and a flexible skin that is calculated from the position of the bones.
The only thing that needs to be stored for animated skeletal models is the
position and rotation of each bone. Each vertex derives its position from
a number of weights, which are simply bone-space (relative to the origin of
the parent bone) offsets. A vertex might derive from weights from multiple
bones. Take for example, the skin on the inside of your elbow. It can
stretch when your arm is straightened out. Bones’ positions are also given
in bone-space, except for one bone which is world-space. Skeletal models
require less storage of data and are more dynamic, because the skeleton can
be modified within the code. However, for each frame, each bone must have
a transformation matrix calculated for it, which must be multiplied by the
transformation matrix of its parent. Recent advances in graphics hardware
have made rendering skeletal models in real-time feasible, but they are still
much slower to render than vertex models.

3 Development

3.1 Requirements and Development Plan

Different 3D engines have different feature sets, but some capabilities are
common to nearly all. I hope to implement this basic feature set and, time
allowing, make extensions to it.

e Load model data from file in commonly used formats

e Load and manage image data and GPU shaders

Manage lights and material definitions

Manage the texturing of polygons, including lightmaps and multitex-
turing

Control the view frustum through a user accessible camera object



The engine is written in C, for purposes of speed and compatibility with
C++. In order to maximize the usefulness of the code that I have written,
I decided to modularize the main features of the engine to allow for greater
flexibility in the future. My base-level library is a highly optimized math
library, the next level is a material definition library, and the top level is the
mesh library. The core engine is separate from all these, and all the parts are
designed for library and platform independence. All parts maintain their own
distinct namespaces except for the math library because of its omnipresence.

4 Engine Architecture

4.1 Engine Core

The very core of the engine consists of a mutable main engine loop. There
are default functions for the different parts of the standard main application
loop which the developer may override, leave in place, or add to by way of
callback functions. The steps of the main loop are:

1. Parse window events (resizing, exiting)
2. Parse mouse and keyboard input

3. Pre-render (clear screen, reset transform matrices)
4. Render

Adding extra engine functionality would likely cause more steps to be added
to the main loop. Physics should be done before the render loop, because
the render loop is usually where collision detection and response are done.
A post render method might also be useful for special effects which require
multiple passes or rendering to the backbuffer, such as reflections.

4.2 Math Routines

3D graphics have a specialized set of mathematics API requirements that
are not handled by C standard libraries. Because of this, I decided to write
an optimized math library that handles the structures commonly used in 3D
graphics applications. Vectors in 2, 3, and 4 dimensions, quaternions, planes,
and 3x3 and 4x4 square matrices are all included. Only the most common



algorithms used in 3D graphics are included in this library, for example a
method to build a transformation matrix from a rotation and displacement.
Some common optimizations are included in the math library, such as a
faster inverse square root and floating point absolute value, and all functions
are inline-enabled, allowing the code from the functions to be substituted in
place of the function call during compilation.

4.3 Material Defintions

Unnamed

Figure 1: Rendering a model on a screen using post-display back buffer
rendering

A separate library, liballoy, handles anything relating to the display of a
surface. Image loading functions are included to facilitate texture generation.
The engine also supports GPU shader, which are used to modify the fixed-
function hardware pipeline on graphics cards for adding other effects, such as



more complicated lighting. Also included is the ability to specify a pattern
for blending multiple textures, know as multitexturing, and to modify the
way the polygon will respond to dynamic lighting, for example, reflectivity.
Materials need only be loaded once, and can be embedded in other files, such
as meshes. When the bind method is called, all the properties of the material
are applied and all polygons rendered afterwards will exhibit those proper-
ties until they are disabled with the unbind function. Memory allocation is
handled entirely by the library for maximum efficiency.

4.4 Mesh Functions

Figure 2: Wireframe display of meshes loaded from file in MD2 format

Most 3D applications need to load some kind of mesh from a file. There
are several different file formats, and writing a parser can be a difficult task.
For this reason, I have written a library to handle loading mesh data from



a few common file formats, specifically the MD2, MD3, MD5 file formats.
These meshes represent various types of meshes: including non-animated
meshes, vertex models, and skeletal models with skinning. All meshes are
converted to a common internal mesh structure: the half-edge structure. In
this model, the mesh stores data on triangle faces, edges, and vertices. Each
edge stores its starting vertex, the next edge, and a corresponding edge in
the opposite direction on an adjacent triangle. Each face stores simply the
first edge, and the vertices are completely separate, allowing them to be
stored in high-performance graphics hardware memory in allocated regions
knows as Vertex Buffer Objects. This internal representation uses the native
animation type of the original mesh, so skeletal models are not converted to
vertex and vice versa. The advantage of using the half-edge format is that
it is easily modifiable in code, simplifying level-of-detail operations, and also
has characteristics useful for collision detection. It is generally slower and
less memory-efficient than other formats, but it is generally still acceptable,
especially when optimized.

4.5 Animation Types

As stated earlier, the engine supports both vertex and skeletal animation.
Vertex animation implies storing the position of each vertex (in world-space)
for every frame of an animation. These models are inflexible in the sense that
it is difficult to modify the animation at runtime. Skeletal animation takes
advantage of the predictable motion of certain meshes. A virtual skeleton is
created, a hierarchy of bones, and a flexible skin of vertices is created around
it. The vertices deform predictably, and so the only information that needs
to be stored for each frame is the position and orientation of each bone rel-
ative to its parent. The compromise is that matrix multiplications must be
used to transform each vertex. In some cases, vertices are linked to multiple
bones, and even more calculations must be made. Recent hardware devel-
opments have made real-time rendering of skeletal models possible. As an
added bonus, programmatic control of the parameters of the animation (the
skeleton’s configuration) is possible, and used to create unique and smooth
animation in recent games.



~
W1 o

T2 ?
wa

/ T4

W2 WE

Figure 3: Exploiting triangle connectivity

4.6 Mesh Optimizations

The simplest way to render a mesh is to iterate over the constituent triangles
and pass all three vertices to the graphics card for rendering. Unfortunately,
the speed of transmitting the vertices from RAM to the graphics card is a
limiting factor for frame rate. In order to speed up the rendering process,
the connectivity of the triangles in the mesh can be exploited. After the first
triangle has been defined with all three vertices, the triangle connected to the
first by the edge which was defined by the last two vertices can be rendered
using only one additional vertex. In the figure, T1 would be defined by V1,
V2, and V3. The graphics card will remember that the last edge was defined
by V2 and V3. When vertex V4 is sent to the graphics card, a triangle will
be formed with the edges V2 to V3, V2 to V4, and V3 to V4 (the stored
edge). Even though the edge V2 to V4 is not explicitly given, it is assumed,
thereby reducing the amount of data that needs to be sent over the system



bus. In order to draw T3, the next vertex would be V5. A problem arises
when trying to build a strip that renders T1, T2, and T4. If the vertices
of T1 are passed to the graphics card in the same order, then the only edge
that can be used to render T2 will be on the wrong side of the triangle to
allow for rendering T4. Instead, after submitting vertex V3, V2 is submitted
again. This reverses the order of the last edge, so that T2 can be rendered
by passing V4, and the stored edge will be from V2 to V4, which means
T4 can be rendered by submitting V6. This operation does require an extra
vertex to be sent over the bus, but this trick is quicker than beginning a new
triangle strip, which would require 3 vertices to be sent. In this example, it
would be trivial to detect the immediate swap and fix the order of the first
vertices so that the swap would be avoided, but in longer strips, swaps are
inevitable.

Figure 4: Rendering a skeletal mesh using triangle strips

The heuristic I used when generating triangle strips from mesh data is



known as LNLS - least neighbors, least swaps. For any given triangle after
the first in a strip, there are at most two choices to continue to. If there are
indeed two neighboring triangles, the first tiebreaker is number of neighbors.
If both neighboring triangles have the same number of neighbors, then the one
which does not require a swap is chosen. The quality of the strips generated
is dependent on the topology of the mesh.

4.7 Particle Engine

Figure 5: Simulating water and fire with particle effects

A computationally inexpensive method for special effects involving lots
of objects (the water droplets in a fountain, for example) is a particle engine.
My particle engine consists of two objects: the emitter and the particles
themselves. The emitter is responsible for keeping track of all the particles in
a doubly-linked list, performing kinematics equations on them, and rendering

10



them. The emitter also stores the texture and size of the particles. The
particles store their position, velocity, acceleration, and color. There is a
method which is called every timestep which decides whether or not to spawn
some number of particles (based on a spawn rate parameter), and gives them
their initial position, acceleration, and velocity. The velocity is randomly
rotated from the specified velocity by some angle which determines the arc.
The developer may override the default spawn or kinematics functionality by
way of callbacks. The particles are rendered using a billboarding technique,
which ensures that they are always rotated to face the camera, which gives
the illusion of volume, even though each particle consists only of a square.

4.8 Debugging Tools

I have developed a small suite of debugging tools to be used in testing my
program. It includes a logging tool, which is useful for keeping track of
problems that are not fatal, and do not need to be reported to the user im-
mediately. The log file keeps track of events such as loading models, texutres,
and scenes. A timestamp is prefixed to each entry, and the log can be written
to by the engine and the application using it. The most useful debugging
tool is a profiler, which allows the developer to time the execution speed of a
block of code and view a report detailing where most time was spent. Tools
such as gprof already exist for the purpose of timing the speed of functions,
but my more tightly integrated profiler allows the developer to test the speed
of separate blocks of code within a function. Being able to immediately see
where performance bottlenecks are speeds up the vital optimization process.

5 Results and Discussion

In addition to meeting the majority of the requirements I set down for my 3D
engine, I would deem my project a success based on what I've learned in terms
of API design and my success in implementing them in my engine. I have
created an engine which legitimately makes 3D programming simple enough
for someone who does not know OpenGL, and I have learned principles of C
and C++ code design and organization that I will benefit from later on. I
have created libraries that are useful in their own right, without any context
relating to the core engine, and I have made steps toward platform- and
library-independence.

11



References

1]

[5]

[6]

[9]

[10]

[11]

Botsch, Mario et al., ”OpenMesh - a generic and efficient polygon mesh
data structure”

http://graphics.ethz.ch/ mbotsch/publications/openmesh.pdf (January
23, 2007)

Clark, James H, ”Hierarchical Geometric Models for Visible Surface Al-
gorithms”, Association for Computing Machinery, Inc. 1976. Presented
at SIGGRAPH 1976.

Shoemake, Ken, ”"Quaternions”, University of Pennsylvania.

Schmalstieg, Dieter and Schaufler, Gernot, "Smooth Levels of Detail”,
Vienna University of Technology, Austria.

Fuchs, Henry et al., ”On visible surface generation by a priori tree struc-
tures”, Association for Computing Machinery, Inc. 1980.

Lin, Ming C. et al., ” Collision Detection: Algorithms and Applications”,
University of North Carolina.
Http://www.cs.unc.edu/ geom/collide.html

Gottschalk, Stefan, et al., "OBBTree: A Hierarchical Structure for
Rapid Interference Detection”, University of North Carolina.
http://www.cs.unc.edu/ geom/OBB/OBBT.html

Vanecek, Petr. ”Comparison of Stripification Techniques”, Center of
Computer Graphics and Data Visualization, Pilsen, Czech Rep.
http://www.cescg.org/ CESCG-2002/P Vanecek /paper.pdf

Vanecek, Petr. " Triangle Strips for Fast Rendering”, University of West
Bohemia in Pilsen.
http://www.kiv.zcu.cz/publications/2004/tr-2004-05.pdf

Kornmann, David. ”Fast and Simple Triangle Strip Generation”, Varian
Medical Systems Finland.
http://www.dle.fi/ dkpa/strip/newstrip.pdf

Nuydens, Tom. " Triangle strip generation”, Delphi3D.
http://www.delphi3d.net/articles /viewarticle.php?article=tristrips.htm

12



