
Development of a 3D Graphics Engine
Kevin Kassing – Computer Systems Lab 2006-07 – Period 5

4 Dimensional Graphing Calculator Demo

Abstract
Visualization is an extremely valuable tool in problem solving, especially as problems 

become more complex. The goal of this project is to create an engine to facilitate three-
dimensional visualizations of problems without requiring knowledge of OpenGL. 
Additionally, the engine should be able to perform at a high level by giving the developer a 
deeper level of control. The engine architecture is designed to let the developer have as 
much control over the IO and rendering processes as he or she wants. Game developers 
will also benefit from mesh modification functions and rendering optimizations.

Procedures and Methods
The engine is designed with speed as 

the primary goal, and platform 
independence as a secondary goal. The 
input routines may derive from different 
libraries, such as SDL or GLUT, but have 
a similar API. 

The engine consists of a basic engine 
framework, and accessory methods 
useful for 3D graphics, such as collision 
detection methods, and conversions 
between different representations of 
rotations. There are texture loading 
methods and support for GPU shaders 
built into the engine. Abstracted from 
the main engine are building blocks not 
specific to 3D graphics, including 
vectors and quaternions.

The mesh functions are also 
exported to a separate library, and will 
be implemented in the engine via 
wrapper structures. By separating the 
mesh routines to an external library, 
the developer gets the choice of 
whether or not to use the main engine 
framework.

Expected Results
I expect to be able to implement a 

data structure which can represent 
blended textures, shaders, and cube 
reflection maps. I also expect to be able 
to load several different mesh formats 
and convert them to a single 
generalized mesh format optimized for 
rendering and Level of Detail 
modification.

Rendering a MD2 format mesh


