
Development of a 3D Graphics Engine
Kevin Kassing – Computer Systems Lab 2006-07 – Period 5

4 Dimensional Graphing Calculator Demo

Abstract
Visualization is an extremely valuable tool in problem solving, especially as problems 

become more complex. The goal of this project is to create an engine to facilitate three-
dimensional visualizations of problems without requiring knowledge of OpenGL. 
Additionally, the engine should be able to perform at a high level by giving the developer a 
deeper level of control. The engine architecture is designed to let the developer have as 
much control over the IO and rendering processes as he or she wants. Game developers 
will also benefit from mesh modification functions and rendering optimizations.

Procedures and Methods
The engine is designed with speed 

and memory efficiency as the primary 
goals. Modularity is achieved by 
abstracting the engine from the math, 
mesh, and material functions.

The engine consists of a basic engine 
framework, and accessory methods 
useful for 3D graphics, such as camera 
management. A highly optimized 
mathematics library provides data 
structures and methods for use with 
vectors, quaternions, matrices, and 
planes. 

The material methods are in a 
separate library, which has support for 
multitexturing, lighting properties, and 
GPU shaders, which modify the fixed 
rendering pipeline of the graphics 
hardware. The library also includes 
image loading routines.

The mesh functions are also 
exported to a separate library. Support 
for loading from MD2, MD3, and MD5 
formats is included. Vertex and skeletal 
animation can both be used, and 
methods to read and write data in the 
internal format are provided.

Mesh data is stored internally in the 
half-edge format. This allows for easier 
modification of the mesh topology and 
adjacency queries, which are useful in 
collision detection. Semantic data, such 
as triangle vertex specifications, is 
separated from vector data, so that the 
vector data may be placed in Vertex 
Buffer Objects for optimized 
transmission to the GPU. Rendering and animating meshes in 3 formats


