Student: Kevin Kassing

Title: Development of a 3D Graphics Engine

Background:


It is often times necessary or desirable to visualize a problem or present an interface in three dimensions. Consumer-level hardware is now able to render 3D graphics in real time, but the software aspects of managing 3D simulations and graphics are still in a relatively nascent stage. Whereas image data in two dimensions is nearly always comprised of a full set of discrete pixels, mesh data must store different information, such as topology. Several different engines exist for managing and rendering 3D objects, but they are varied in their storage of those objects. In addition, many of the current engines are inflexible, resource-heavy, and platform or library-dependent. The goal of my project was therefore to create an engine which is lightweight in nature, flexible by virtue of being modular, and uses cross-platform and open-source libraries as well as providing native alternatives where possible.

Description:


The engine I have designed has a tiered architecture; there are 3 libraries which do not rely on the core engine. The base library, which handles mathematics functions for vectors, quaternions, planes, and matrices, only relies on the C standard library, meaning it is fully portable. The material library is in charge of loading images and converting them to OpenGL textures, as well has managing lighting properties and GPU shaders. It requires the math library and OpenGL to be present, and can optionally take advantage of libjpeg and libpng for loading their respective image types, or SDL_image for a wide variety of formats. 


The heart of the engine is the mesh library, responsible for managing the rendering and topology of 3D meshes. The internal format is the half-edge format, which is designed to make managing and navigating the topology of the mesh easier. Data can, of course, be manually inserted into the data structure, but for convenience, loaders are provided for the MD2, MD3 and MD5 file formats, as well as a native format which loads quicker and can contain additional information. For any mesh data in the half-edge format, the mesh library has facilities to generate optimizations in the form of optimal rendering order for connected triangles. Triangle strips, which reduce the amount of data transfer necessary between the mesh data in RAM and the graphics card, are algorithmically generated. Both skeletal and vertex animation are supported, and there are no dependencies other than the material library, the mesh library, and OpenGL headers. 


The engine itself is the top level of the architecture. It requires SDL, a cross-platform graphics library which assists in creating a window for OpenGL to render to. The engine provides a framework for the application loop, eliminating the need for the programmer to manually tell OpenGL when to clear the screen or flip the buffers. Mouse and keyboard input interfaces are supplied, as well as management of the camera orientation. There is a basic profiling system for locating performance bottlenecks, and a raster font system facilitates the rendering of 2D text to the screen for debugging or interface purposes. In addition, a primitive particle engine is embedded, which spawns billboarded (oriented toward the camera) quadrilateral textured polygons, which can be used to emulate water or fire.

