Development of a 3D Graphics Engine

BY KEVIN KASSING

September 8, 2006

For this project, I would like to build a well-structured core graphics engine that utilizes
OpenGL, and add on features tailored to, but not limited to, games and physical simulations. I
would like to implement the following into the core engine:

Ability to load common model formats

Flexible, simplified lighting

An input paradigm similar to Java’s input paradigm (e.g., onKeyPressed)
Animated skyboxes and/or skydomes

Non-Uniform Rational B-Splines (NURBS) surfaces

Interpolated animation

Occlusion culling via scenegraphs (BSP trees and octrees, for example)
Composited texturing (also known as multitexturing)

Level of detail (LOD) rendering

Skinning of skeletal models

Fog and particle effects

Environment mapping for use in reflections

Bump mapping and normal mapping for increased realism in lighting

Features that I would like to add to the engine to extend it from a simplified interface to
OpenGL into a multipurpose engine include:

Simple physics simulation based on the Runge-Kutta 4 integration algorithm, modeling
linear and angular kinematics

Collision detection and response through the use of multiresolution maps

Management of Al agents through a unified, state-machine based interface with message
routing

Terrain generation using fractal methods

Navigation meshing for use in pathfinding algorithms

Debugging methods, including flexible profiling, logging, and assert macros
A simple scripting language for easy modification of simulated events

A user interface using the GTK+ toolkit and/or an in-engine console

The job of a 3D graphics engine is to keep track of a set of polygons and render them through
the view of a camera, often utilizing perspective. Interactive lighting adds to the "suspension of
disbelief." Because of the immense amount of data required, optimization and efficiency are
especially important. Scenegraph techniques utilizing predetermined tree structures aid in the
efficiency of occlusion culling, or the removal of offscreen polygons. Further speed increases are
available by streamlining vertex submission, using techniques that interact with video hardware
to manipulate cached vertex data.



I believe that this engine would be written completely in C++-, perhaps with some sections
written in assembly language for efficiency. I would need to develop a simulation in parallel to
be able to test the features of the engine. For the engine, there is definitely a well-defined pro-
gression that could show results in short intervals. I expect to need only the following things: a
computer with hardware accelerated 3D graphics, and the libraries for OpenGL, SDL, and per-
haps the SDL image library.

The result I would like to achieve is to make the process of writing interactive 3D simula-
tions and games easy and fun, especially for those who do not wish to make the large time
investment involved in learning OpenGL. I would like to present the final results in the form of
some visual simulation, perhaps a walkthrough of a house which demonstrates the advanced
visual effects, or a Rube Goldberg contraption that shows off the physics capabilities.



