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Abstract

Many different Artificial Intelligence and Machine Learning archi-
tectures and algorithms have been developed, each with their own
strengths and weaknesses that make them particularly suited to cer-
tain classes of problems. Two approaches to artificial intelligence
are dealt with here: subsumption architecture, and neural networks.
S.A.’s are good at building up complex behaviors from sets of simpler
ones, when a problem can be broken down into independent peices.
Neural networks are good at memorizing associations and making in-
ferences about new data based on stored memories, but can take im-
practically long to train when the datasets are large. Performance on
various tasks can be improved by combining the two approaches to
take advantage of the strengths of both.
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architecture

1 Introduction

The purpose of this project is to design a system that combines the capa-
bilities of neural networks and subsumption architectures to produce a more
flexible and versatile hybrid system. In this paper I describe a set of ba-
sic library functions for the manipulation of subsumption architectures and
neural networks, and their use in building a hybrid system, which is then
evaluated on the test problem of simple character recognition, and compared
to the performance of a simple single-network model.
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This project serves as a starting point for further investigations of the
improvements that can be made by in AI models by using multiple approaches
that cover each other’s weak points. The results could be applied to almost
any problem that requires high adaptability and dealing with ’fuzzy’ input,
such as character or speech recognition with multiple users or real-world
robot navigation.

2 Background

Most AI and Machine Learning research to this point has consisted of pursu-
ing separate single methods, either to maximize utility for a single problem
type, or to duplicate biological models. To my knowledge, little research has
been done in hybrid systems that combine the best aspects of multiple other
methods to produce a highly versatile AI/ML system without necessarily try-
ing to model biological nervous system functions. A similar research project
was carried out by Julian Togelius at the University of Sussex, focusing on
the control of a mobile robot, in 2003. Hybrid neural networks have been
studied which incorporate symbolic representations into neural network pro-
grams for, among other things, speed and ease of control while retaining the
robustness and generalization capabilities of pure neural nets since the late
80s.

The subsumption architecture model was first used in 1984 and invented
by Alexandre Parodi. Subsumption architectures make use of multiple be-
havior layers which process inputs and produce outputs independently, with
some layers capable of temporarily overiding or subsuming the actions of
others. This allows for low-level, high-priority reflex layers to deal with im-
mediate problems, while higher layers control the mid-term and global goals
of the agent. Brooks modified the original hierarchical layer model to pro-
duce a competitive architecture in which each layer competes for priority
with a master scheduler, rather than having its priority fixed.

3 Development Part 1

Requirements: The neural network should be able to memorize any arbi-
trary set of input/output associations, where inputs and outputs are in the
form of lists of numbers between 0 and 1.

2



Overview: The neural network code is written in C, using the gcc com-
piler. Functions are available to generate, save, and load from a file networks
of arbitrary dimensions, to query a given network with an input vector for
the associated output vector, and to teach new associations to the net in
cycles.

Limitations: The primary limitations on this project have been time to
do the necessary debugging and testing.

Iterative Evaluation Plan: I have used the Spiral Lifecycle Model to
develop this project. Each new component was exhaustively tested before
adding on the next one, which often revealed previously inconsequential flaws
in that required re-visiting the development of older components.

Research Theory and Design criteria: The central algorithm for this
project is the back-propagation neural network learning algorithm. Back-
propagation is a method of sequentially updating the weights in each layer of
a multi-layer, simply connected network based on the errors in the following
layer. At the output layer, errors are calculated for each neuron based on the
difference between the actual output and the target, and weights are updated
accordingly. These errors are then distributed among each of the neurons in
the next layer up, weighted by the output of each of those neurons, and
the process is repeated to propagate the errors and corrections backwards
through the entire network.

Testing and analysis: The primary test for this program consists of pro-
viding the network with a list of input/output associations and run training
cycles until the network either converges on the correct solution, or it becomes
clear that it will not (forexample, byconvergingonanincorrectsolutionorbeginningtodiverge).
We can thus test the efficiency of the program by examining how many epochs
are required to fully train the network. In the event that the network did not
converge, small numbers of training epochs were run, with verbose output
of the input and output values of all layers of the network in the process in
order to identify where and why incorrect adjustments are being made.

4 Development Part 2

Phase 1 Phase 1 consisted on creating a simple bitmap font format with
which to train a neural network for character recognition, and testing indi-
vidual networks on learning a small character set. A program was written
to take a text file and convert it into an image using the font data, and a
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second program was written to train a number of networks to recognize each
character in the set to a minimal initial confidence level.

Phase 2 Phase 2 consisted of creating a program to read an image and
run one character at a time through all of the neural networks in order to
identify the closest match and transcribe an ASCII character. This program
has the ability to continuously re-train the networks to improve accuracy if
the correct transcription is given so that it can identify mistakes. Once this
was tested and shown to work, the character set was expanded to include all
95 ASCII printable characters in one font.

Future Work The next stage will involve adding the capacity to generate
new networks and add characters to the system’s knowledge base on-demand.

5 Results

The purpose of this project has been to show that a combination of differ-
ent AI strategies, specifically subsumption architecture and neural networks,
could outperform neural networks alone in some circumstances. It seems so
far to have been successful in demonstrating this point.

A complete analysis isn’t possible yet, but while the character recognition
program employing a multiple-network subsumption model has been able
to very rapidly learn to properly recognize a complete 95 character ASCII
character set, the single-network test has been unable even to complete low-
confidence initial training.

The most substantive and generalizable conclusion that can be drawn
from this project is that multilayer neural networks are capable of learning
more rapidly and with higher confidence given smaller association sets; ergo,
wherever it is possible to break a problem down into smaller parts, it’s more
efficient to use many smaller specialized networks than to try and train a
single large network to accomplish everything.

6 Appendix: API

Debugging
mprntnet(neurot ∗ w)
printout(float ∗ o, intl)
I/O
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loadInput(neurot ∗ w, float ∗ I)
loadTarget(neurot ∗ w, float ∗ T )
copyOutput(neurot ∗ w, float ∗ O)
getInput(w)
getOutput(w)
getInputSize(w)
getOutputSize(w)
getLayerDepth(w)
mquery(neurot ∗ w);
Internal States
setLearningSpeed(w, s)
setMomentum(w, s)
momentumOn(neurot ∗ w)
momentumOff(neurot ∗ w)
swapOn(neurot ∗ w)
swapOff(neurot ∗ w)
swapInput(w, i)
addInput(neurot ∗ w)
Training
backprop(neurot ∗ w)
Loading, Saving, and Generating Nets
mknet(w)
mldnet(FILE ∗ f, neurot ∗ w)
mrldnet(FILE ∗ f, neurot ∗ w)
mrndnet(neurot ∗ w, int ∗ dim, intdep)
msvnet(FILE ∗ f, neurot ∗ w)
mdstrynet(neurot ∗ w)
Binary Loading and Saving
bldnet(FILE ∗ f, neurot ∗ w)
brldnet(FILE ∗ f, neurot ∗ w)
bsvnet(FILE ∗ f, neurot ∗ w)
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