
Development of a 3D Graphics Engine

Kevin Kassing

September 13, 2006

For this project, I would like to build a well-structured core graphics
engine that utilizes OpenGL, and add on features tailored to, but not limited
to, games and physical simulations. I would like to implement the following
into the core engine:

• Ability to load common model formats

• Flexible, simplified lighting

• An input paradigm similar to Java’s input paradigm (e.g., onKey-
Pressed)

• Animated skyboxes and/or skydomes

• Non-Uniform Rational B-Splines (NURBS) surfaces

• Interpolated animation

• Occlusion culling via scenegraphs (BSP trees and octrees, for example)

• Composited texturing (also known as multitexturing)

• Level of detail (LOD) rendering

• Skinning of skeletal models

• Fog and particle effects

• Environment mapping for use in reflections

• Bump mapping and normal mapping for increased realism in lighting

Features that I would like to add to the engine to extend it from a
simplified interface to OpenGL into a multipurpose engine include:

• Simple physics simulation based on the Runge-Kutta 4 integration
algorithm, modeling linear and angular kinematics

• Collision detection and response through the use of multiresolution
maps

1



• Management of AI agents through a unified, state-machine based in-
terface with message routing

• Terrain generation using fractal methods

• Navigation meshing for use in pathfinding algorithms

• Debugging methods, including flexible profiling, logging, and assert
macros

• A simple scripting language for easy modification of simulated events

• A user interface using the GTK+ toolkit and/or an in-engine console

The job of a 3D graphics engine is to keep track of a set of polygons and
render them through the view of a camera, often utilizing perspective. Inter-
active lighting adds to the ”suspension of disbelief.” Because of the immense
amount of data required, optimization and efficiency are especially impor-
tant. Scenegraph techniques utilizing predetermined tree structures aid in
the efficiency of occlusion culling, or the removal of offscreen polygons. Fur-
ther speed increases are available by streamlining vertex submission, using
techniques that interact with video hardware to manipulate cached vertex
data.

I believe that this engine would be written completely in C++, perhaps
with some sections written in assembly language for efficiency. I would need
to develop a simulation in parallel to be able to test the features of the
engine. For the engine, there is definitely a well-defined progression that
could show results in short intervals. I expect to need only the following
things: a computer with hardware accelerated 3D graphics, and the libraries
for OpenGL, SDL, and perhaps the SDL image library.

The result I would like to achieve is to make the process of writing inter-
active 3D simulations and games easy and fun, especially for those who do
not wish to make the large time investment involved in learning OpenGL.
I would like to present the final results in the form of some visual simula-
tion, perhaps a walkthrough of a house which demonstrates the advanced
visual effects, or a Rube Goldberg contraption that shows off the physics
capabilities.

2


