Training

*All filters begin blank

* Token database 1s empty, as 1s messages

*Trained with a corpus of spam / nonspam
« Specified by user, this is supervised learning

*Methods for training as email is seen

e TEFT

e Train every email the user marks

e TOE

e Train whenever the prediction does not match user
classification.

* TUNE

e TOE, but retrain the message until it 1s correctly
categorized.

e This filter currently has a TEFT module

Analysis
*Email's tokens are compared to training data

*Some aggregated percentage 1s created for email

e This can be done with one of two algorithms

e Paul Graham's
((AS)/(T5))
(((AS)I(TS))+((AL)I(TI)))

e where AS and Al are the total appearances in

e P=

spam and innocent email, and TS and T| are the
total humber of spam and innocent emails in the
corpus.

e Gary Robinson's

F:(S'X+N'P())
(S+N)

e where S is a tuning variable, N is the total
appearances of the token, P is Graham's value
for the token, and X is the hapax value

e This filter uses Robinson's

Databases

Two databases

e Token Database
e Holds all information about all tokens
e Each token 1s a word, phrase, HTML tag, or
more
e Database holds appearance counts.

* Message Database
e Holds all messages, and their classifications
* Both user and system (or guess)
classifications

e Each message 1s an email.

Adapting a Statistical E-mall Filter

Un-reviewed

David Kohlbrenner

TJHSST
|T.com

Qutside emails

messages

P Value Calculator: GrahamPValue:
-1 BIAS Uses ﬂIE_E_‘,‘EtEI[l for
"HAPAX calculating values
“MIN_P for a word as outlined by
-Mgg:p Paul Graham.

-calculatePValue(Token)

RobinsonPValue:
Uses the modifications
outlined by Robinson for
mdividual word values.

Trainer:
: -trainDB()

Training Package

User

Reviewed messages

TrainingData:
-addToTraining Data(token,info)

TrainingDatalmplemetation:
Not complete

Token appearance counts

Message Database:
~-getMessageBvID(Long)
-getTwoFlaggedMessages(int,int)
-getUserFlaggedMessages(int)
-getSystemFlaggedMessages(int)
-setMessageUserFlag(long,int)
-setMessageSystemFlag(long,int)
cetlIserFlaggedMessageCount(int
-addMessage(long,int, int, int)
-addMessage(Message)
-close()

Message:

Un-reviewed messages

Analysis Package

Analyzer:
-MESSAGE_THRESHOLD
-analyze() messages and
-an aggregation algorithm
-access to token database
-access to message database

TokenDatabaseMemory:
Stores all tokens as Token

objects in a HashMap.

TokenDatabaseSQLite:
Uses a JDBC SQLite driver
to store and access all token
data in an external database.

Chi-Squared:
-P_THRESHOLD
Aggregation algorithm: -P I BIAS
-setTokenDatabase() | -chi2Q(double,double)
-getValue(Message) Takes a message
and returns a probability
thatitisirrelevant

sing Fisher's Chi-squared

v

MessageDatabaseMemory:
This stores all messages as
Message objects in a HashMap
Keeps all messages in a
temporary memory database.

=
MessageDatabaseSQLite:
This uses a JDBC SQLite driver
to access an external SQLite
database, and keeps all messages
in component form there.

Token:

-ID number
-Appearances in interesting
-Appearances not
-Current P value
-HAPAX THRESHOLD
-HAPAX_ EBIAS
-getBiasedDecision()

taddToTokenValue(long,int,int]

Suggestions for unreviewed messages

Token Database:
-reset()
-close()

-getTokenBvID(long)

-setP(long,double)
-getTokens()

Database Package

User

Tokenization, or Feature Set Creation
*Though this 1s part of pre-processing, it 1s critical to the functionality of this filter
*Tokenization is the process of turning an email into a list of parts, or tokens.
*A token can be a word, a phrase, or even HTML and header features.

eExample:

* “The orange ball” Becomes

e “The”

e “orange”

e “ball”

* “The orange”

e “orange ball”
 “The orange ball”

o “*FONT Times New Roman”

« “*FONTSIZE 30 pt”
* ctc...

External database
(Only with
SQLite package)

External
User related

Abstract Class

B Implementation
of abstract class

—

Data Flow

| A
Key

Results

* Works to an extent
e Test data had very limited feature set
e Test data was based on personal writing style

e Little time to test/tune

* 56%-57% accuracy at best

e Measured by interesting predicted/interesting actual

e Also mistakes/interesting marked

* More testing will be done

e With current data, no conclusions can be drawn about

this filter.

Why this design?

*Highly modular parts
e Databases, analyzing methods, and
training methods are easily
swappable.

*Corpus will be static set, with just the
categorized messages changing and
Increasing.



