
Modular Architecture for 
Computer Game Design

by Teddy McNeill
TJHSST Computer Systems Lab 

2006-2007

Figure 2: A screenshot from the game. The Enemy's artificial 
intelligence causes it to jump through the air, bouncing off of the 

walls, while turning to fire on the player. Straight lines in the 
background are used to provide perspective.

Abstract
In this project I attempted to design and implement 
a video game with a highly modular, data-centered 
architecture based on Jeff Plummer's "System of 
Systems" approach. The implementation had to 
demonstrate the successful interaction of 
independent systems, but was not required to have 
any significant complexity within each system (e.g. 
graphics, AI, etc.).

Applications
The development of a flexible and modular 
architecture promises to improve the amount of 
time and money required to make a large computer 
or video game. Also, the extra focus allows 
middleware to become increasingly complex, 
specified, and advanced for all programs.

Development
I used C++ and the OpenGL library to 
implement the game. I first prototyped the 
game's functions and then reorganized this code 
into four independent systems: Input/Output, 
Data, Physics, and Game Logic. When this was 
complete, I added an Artificial Intelligence 
system from scratch in order to test the effect of 
the architecture on development.

Results
The data-centered nature of the program made 
the additions of an enemy and AI system much 
easier; data did not have to be meticulously 
managed and passed between systems. 
However, these additions were not seamless. 
They required that the Game Logic class be 
updated (which is to be expected upon changing 
the game rules) and that the I/O class include 
enemy-related output. In order to fully realize 
the advantages of the System-of-Systems 
approach, developers would have to standardize 
and abstract each system to a much greater 
degree than was achieved in this project.

Game Data

Graphics

AI

Input

Physics

Sound

Figure 1: The System-of-Systems design model. Each 
system is independent from the others, and each 

operates on a central set of game data.


