Project Description

Student: Tom Morgan
Title: A Logarithmic Random Access Tree
Background:

Dynamic arrays (such as vectors and array lists) are commonly used among programs to fill the places of arrays when the size is unknown and intermediate insertions and deletions are necessary. They are generally implemented as arrays whose data is shifted around when necessary and copied to a larger array when extra space is needed. Tradition dynamic arrays have O(1) random access, O(N) insertion (except to the end where it is amortized O(1)) and O(N) deletion (except from the end where it is amortized O(1)).

Red-Black Trees have been extended to allow for logarithmic access of the nth element, however although this is similar to random access it is not identical. Random access uses sequential integral keys and will change the keys of the other elements as elements are added or removed.

Description:

Making a data structure that performs like a dynamic array but functions in logarithmic time for all operations is the goal, but is by no means a trivial one. The obvious solution is to use a tree of some sort, but how?

By using a binary tree in which values are stored at the leaf nodes and each node keeps track of how many leaves there are below it, we can quickly achieve logarithmic random access, insertion and deletion in the average case but all operations are linear on the worst case. To allow balance the tree, a balanced search tree such as a Splay Tree or Red Black Tree is used. These trees are always balanced and by using their balancing mechanisms and changing them to use the random access system described above, the goal is reached.

