
Map Path Finding with Realistic Conditions 
Computer Systems Tech Lab 2006-2007

by Olex Ponomarenko
Third Quarter 

Abstract
An abstract representation of a map will 

be used to incorporate realistic conditions 
not currently in place in commercial path 
finding programs. Along with a visual display, 
my project could also be used as a tool for 
educating students on different types of 
search algorithms, memory efficiency, and 
runtimes.

The plan is to incorporate more realistic 
aspects of traffic movement such as traffic 
light and stop sign delays in order to provide 
better paths through a map. In the process, a 
random graph generator will be created, 
incorporating locations, intersections, and 
different size roads (ranging from a small 
residential road to an interstate highway). An 
efficient heuristic will incorporate these 
aspects into an A* algorithm or a different 
graph traversal technique.

The entire project is also designed to be 
easily testable, flexible, and scalable. All of 
the parts of the project, from the shell to the 
final heuristic will be designed and created 
with a large-scale problem in mind.

Background
Navigating a map has been a common 

Artificial Intelligence problem for a number of 
years. Sites such as Google Maps and 
MapQuest are common examples of map 
traversal. But they often disregard all aspects 
of traffic besides speed limits, and come up 
with very complicated paths that would in 
reality be slower than a simpler path, simply 
because the more complicated path would 
have traffic lights and stop signs.

Usually such commercial programs simply 
use speed limits multiplied by the distance of 
the road to approximate travel time in their 
heuristics. On smaller roads, this is often 
wildly different than the actual travel time on 
those roads. The main cause of this is the 
failure to consider traffic lights and stop signs 
(not to mention traffic congestion) by said 
commercial graph traversing programs. With 
added factors such as traffic lights and stop 
signs, the program will avoid most of the flaws 
of Google Maps and similar programs – 
complicated series of smaller roads leading to 
the destination.

Figure
The figure below shows a simple graph of 

six locations, two intersections, and a highway 
(thicker line) in between some of the points. 
This is the type of abstract map 
representation that I will use in my program.

Methods and Results
The python language is being used to 

create the problem and solve it. Java is used 
to display the graph, in a similar manner to 
the figure on the right.

A* search is used to determine the fastest 
path between locations, which means the 
answer is always the optimal path. The 
heuristic used will be highly sophisticated 
and thoroughly tested with the use of a 
random graph generator.

The program outputs nicer, simpler paths 
than one would expect from conventional 
speed-limit-only map path finding programs. 
The program will work for any input scale 
within reasonable limits, and the random 
graph generator will produce maps where 
each point connects to each other point. This 
random graph generator is key to 
randomizing and optimizing my heuristic and 
outer program shell.


