
Map Generation and Traversal with Dynamic Point
Costs and Realistic Conditions
Computer Systems Tech Lab 2006-2007

by Olex Ponomarenko

Abstract
An abstract representation of a map was used to

incorporate realistic conditions not currently in place
in commercial path finding programs. As the project
is focused on the back-end of random graph
generation and searching, it can be useful for other
projects as an educational tool about efficiency and
memory usage, as well as more sophisticated front-
end systems.

The project incorporates more realistic aspects of
traffic movement such as traffic light and stop sign
delays in order to provide realistic delay calculation
when traversing a map. The map is generated using
a sophisticated random graph generator, which was
also developed as part of this project.

The entire project is also designed to be easily
testable, flexible, and scalable. All of the parts of the
project, from the shell to the final heuristic will be
designed and created with a large-scale problem in
mind.

Background
Navigating a map has been a basic Artificial

Intelligence problem for a number of years. Sites
such as Google Maps and MapQuest are common
examples of map traversal. These programs rarely
consider traffic factors other than speed limits and
come up with paths with a high number of turns that
would in reality be slower than a less complex path,
simply due to time spent on traffic lights and/or stop
signs.

Usually such commercial programs simply use
speed limits multiplied by the distance of the road to
approximate travel time in their heuristics. On
smaller roads, this may vary from the actual travel
time on those roads. The main cause of this is the
failure to consider traffic lights and stop signs (not to
mention traffic congestion). With added factors such
as traffic lights and stop signs, the program avoids
such potential flaws of Google Maps and similar
programs – complicated series of smaller roads
leading to the destination.

Figure
The figure below shows a simple graph of

300x300 pixels with 280 locations. The road size
scales from light gray to black (light gray being
residential roads, black being the equivalent of an
interstate highway) For testing purposes, I worked
with larger, 800x800 pixel maps for additional data.

Methods
The Python language is used for both map

generation, map traversal, and cost calculations.
Java is used to display the graph, in a similar
manner to the figure on the right.

The generator is designed so that all locations
connect to all other locations in some way. Road
connections are realistic in the sense that small
driveways do not have an exit onto a highway
passing above. Connections between small roads
are stop signs, and scale up to traffic lights for
average roads and then exits for highways.
Advantages and disadvantages based on direction
are also in place; for instance, one-way stop signs
and traffic lights favored to a larger road.

Results
The more complex model with point costs

constructed in the project provided a faster path only
in cases where a lot of turns were required to get to
the destination, and the difference in travel time
between a conventional search algorithm and one
with point costs was on average 5.6 percent.

Since, the more complex method takes up
approximately three times the space and performs
2log

2
(n) times slower than a conventional search

algorithm, this approach is impractical if processing
costs are considered.

