COMPUTER SYSTEMS RESEARCH
Program Iteration Report 2006-2007
Running version, planning, testing, and analysis of your program
Lifecycle Planning

Name: Peter Riggs, Period: 5, Date: 11/1/06

Project title or subject: Hallway Traffic Simulator

Language(s) and other software tool(s): Java, Fortran

Iteration #3 - October 16-31, 2006

1. Choosing a lifecycle model for your project. (Rapid Development, p. 154) Different projects have different needs, even if they all need to be developed as fast as possible. To choose the most effective lifecycle model for your project think about your answer to these questions:

· How well do I understand the requirements at the beginning of the project? Is my understanding likely to change significantly as we move through the project?

· How well do I understand the architecture of my program? Am I likely to need to make major architectural changes midway through my project?

· How much reliability do I need?

· How much do I need to plan ahead and design ahead during this project for future versions?

· How much risk does this project entail?

· Am I constrained to a predefined schedule?

· Do I need to be able to make midcourse corrections?

· Do I need to provide my customers or management (or teacher) with visible progress throughout the project?

· How much sophistication do I need to use this lifecycle model successfully?

2. Although "Code-and-fix" may be an appealing model, choose one these lifecycle models that you feel best fit your project.

· Spiral Model - breaks a software project up into miniprojects. Each miniproject addresses one or more major risks until all the major risks have been addressed. Risks can refer to poorly understood requirements or architecture, problems in underlying technology, how you're going to code a particular piece of your project. Each iteration moves your project to a larger scale. Each iteration has similar steps:

1. Determine your objectives for this iteration

2. Identify risks that exist at this level of your project's development

3. Evaluate or think about alternative paths or methods you could take

4. Develop deliverables for that iteration and verify they are correct. Analyze your results so far.

5. Plan for your next iteration, and commit to an approach for the next iteration

· Evolutionary Prototyping - develop the system concept as you move through the project. You may begin by developing the most visible aspects of the system. Evolutionary prototyping is especially useful when requirements are changing rapidly. It's also useful when you're unsure of the optimal architecture or algorithms to use. Disadvantage - it's impossible to know at the outset of the project how long it will take to create an acceptable project. You don't know how many iterations you'll have to go through. But, steady signs of progress can be seen, that's good.

· Staged Delivery - you show software results in successively refined stages. Unlike evolutionary prototyping, when you use staged delivery, you know exactly what you're going to build when you set out to build it.

· Evolutionary Delivery - straddles the ground between evolutionary programming and staged delivery. You develop a version of your product, show it to your "customer", and refine the product based on customer feedback. How much evolutionary delivery looks like evolutionary prototyping depends on the extent to which you plan to accommodate customer requests. If you plan to accommodate most requests, evolutionary delivery will look a lot like evolutionary prototyping. If you plan to accommodate few change requests, evolutionary delivery will look a lot like staged delivery.

· For more detail - see the chart Rapid Development, p. 156

Examples of modern terminology:

· Scrum - an iterative, incremental process for developing any product or managing any work. It produces a potentially shippable set of functionality at the end of every iteration. more information, also see wikipedia site

· Agile - "Individuals and interactions over processes and tools", wikipedia info

· Extreme Programming - also known as XP (not Windows XP!), wikipedia info..."Like other agile methodologies, Extreme Programming differs from traditional methodologies primarily in placing a higher value on adaptability than on predictability."

3. Identify a lifecycle model that's a good fit for your project + any comments you may have as to why:

I think the evolutionary prototyping model will fit my project the best, since it is the most flexible and I do not need to be able to show a functional product to any customers every few weeks. The flexibility of the evolutionary model appeals to me because the scope of my project is also highly variable. I am still learning Fortran programming techniques, and I have not attempted a project of this scale before, so my estimates on how the project will progress may be far off the mark. As such, I currently have a working program with very few functions, and I will continue to add layers of complexity as the year progresses.

4. You are commencing upon a research project. What is research? The following “answers” are from Rising Above the Gathering Storm and Pasteur's Quadrant by D. Stokes.

Answer, part 1:

Basic research – pursued for the sake of fundamental

understanding but without thought of use.

Applied research – pursued to convert basic understanding into

practical use.

These two classifications above can break down in the real world

because “basic” discoveries often emerge from “applied” or

“developmental” activities:

 which leads to...

 Answer, part 2:

 In Pasteur's Quadrant (1997) Donald Stokes distinguishes four

 types of research:

Pure basic research, performed with the goal of fundamental understanding (such as Bohr's work on atomic structure)

Use-inspired basic research, to pursue fundamental understanding but motivated by a question of use (Pasteur's work on biologic bases of fermentation and disease)

Pure applied research, motivated by use but not seeking fundamental understanding (such as that leading to Edison's inventions)

Applied research that is not motivated by a practical goal (such as plant taxonomy)

 Consideration of Use?

 No Yes

 Quest for

 Yes

 fundamental

 understanding?

· No

5. What type of research do you think characterizes your own project? Also give a brief explanation or discussion why.

I think that pure applied research is most similar to the type used in
development of my project. My understanding (and human understanding
in general) of traffic patterns is satisfactory, and there are no large gaps in
general knowledge for this area. My research does not, therefore, require
a deeper understanding of the field, but merely enough that I can know
how best to complete the task at hand.

6. Outline your organization for this iteration of your project. For example, what types of inputs does your program expect, what algorithms and processing the program is doing, and what output(s) do you expect.

· Input(s) - try to test a variety of kinds of inputs:

The program currently requires only the number of students to simulate, their starting locations, and destinations (which are randomized by default). I have been testing how the program will run with increasingly large student populations, and thus far the total time for all computations for a thousand students is still under a minute—perfectly acceptable, given that the algorithm only needs to run once and the final program will be running on a far more powerful computer.

· Algorithms/routines you're using and learning (you can paste in code and explain):

· Types of output you expect, what do you expect the program to do for this iteration?

The program should randomize the locations of a number of students (1000+), and have them find the best possible path to their destination without walking through any walls or other students on the way. The Java viewer will then display all of these movements in a GUI form. I have not added much functionality to my Fortran program yet, because I am mostly concerned with runtime—the program must be able to run smoothly even with very large numbers of students.

· Tests - how are you validating the success or failure of this iteration. What pieces of code, functions, classes, algorithms are you checking and what specific tests are you doing? How are you analyzing your results at this point?

An algorithm is considered successful at this point if it causes all of the students to reach their destinations without breaking any basic laws of physics. If this is accomplished, the next test is the runtime of the Fortran program (Java viewer always runs at the same speed)—it must be optimized so that it does not become impractically slow with much larger student populations.

7. What do you think your next step will be for the next iteration of your program? Try to be as specific as possible.

My next goal is to enable the program to read in an environment (wall layout, initial student locations, etc) from a text file, and have the students take in the new layout into their pathfinding calculations. In other words, I hope to make each student capable of navigating a maze while simultaneously not walking through other students.

Basic research

Applied

research

Development

Production

and

Operation

Pure applied

research

(Edison)

Use-inspired

basic research

(Pasteur)

Pure basic

research

(Bohr)

