
An Investigation of 3D Graphics Methods

Ramesh Srigiriraju
Computer Systems Lab 2006-07

June 4, 2007

Abstract

The purpose of this research project is to find a way to maximize
the speed of a 3D graphics program. To change the runtime speeds, I
used different methods to store the matrices used for graphics-related
operations (such as rotations, translations, etc.). One storage method
involved a matrix expression tree where all the points were recalcu-
lated with each rotation and were stored as column vectors. My second
storage method stored data as row vectors, while the third calculated
the points once at the beginning of the program. The final version
that was tested hard-coded the formulas and avoided expression trees
altogether. Another area of focus of my program was Z-buffering. Af-
ter running the Z-buffer algorithm on a set of points, I experimented
with four different methods of graphing. The first graphing method
simply plotted the points that were visible. The second one drew tri-
angles between the pixels, and the third method combined the first
two. The fourth method, which used different schemes for different
regions of the graph, worked almost as well as the third.

1 Introduction

1.1 Scope of Study

The scope of this program is to allow the user to graph functions of two vari-
ables. The program uses homogeneous coordinates and matrices to perform
rotations on the graphs while viewing. The function and the bounds of the
viewing window are inputted by the user. In order to store the function, the

1



program creates a binary expression tree and substitute in values of the in-
dependent variables to determine the value of the function at various points.
I used this program to test the speeds of the various data storage methods.

Another area of my program involved a matrix editor, which I used to
test my matrix expression tree class. This editor allows the user to set the
size of a matrix and input data into the cells. After editing the matrix, the
user can then perform various operations on it, such as matrix multiplication,
Gauss-Jordan elimination, matrix inversion, etc.

After creating these two programs, I used them to test the data struc-
tures. The first data storage scheme that I used involved a matrix expression
tree. This data structure is similar to a binary expression tree, but it stores
matrices instead of numbers. The tree would be used to store the matrix
expressions needed to rotate my graphs, and it would be evaluated whenever
I needed to plot points. The original, unrotated points would be recalcu-
lated each time the viewing window updates itself to take into account any
changes in screen size. The original data points would also be stored as
column vectors.

My second data storage scheme was similar to the first one. However,
the points would be stored as row vectors instead of column vectors to take
advantage of the way Java stores arrays. My third data storage scheme
involved calculating the original data points only once at the beginning of
the program. Other than that, this storage scheme was similar to my second
one. My final data storage scheme involved hard-coding the rotation formulas
instead of using matrices. The original data would only be calculated once
at the beginning.

The graphing calculator module was also used to test various graphing
methods for the Z-buffer algorithm. This time, instead of drawing the graph
like a ”wire mesh,” the function would be graphed as a continuous surface. In
order to fill in tears that appeared in the graph, I used four different graphing
schemes.

The first scheme simply plotted the data points that were not being ob-
scured by other parts of the function. The second scheme drew triangles
between visible points: after the points (x, y, f(x, y)), (x+1, y, f(x+1, y)),
and (x, y+1, f(x, y+1)) were rotated, a triangle would be drawn containing
these points as its vertices. If any one of the points was being obscured,
the triangle would not be drawn. The third scheme combined the first and
second schemes, while the fourth scheme used the first scheme for shallow
gradients and the second scheme for steep gradients.

2



1.2 Purpose/Relevance

The purpose of this research project is to compare different data structures
in order to maximize the speed of a 3D graphics program. To do this, I
first had to create a binary expression tree class to store expressions. Then,
I had to expand this class so that it’d store matrix expressions. Next, I
had to create a class that allowed the user to perform matrix operations in
order to test my matrix expression tree. Finally, I had to create a class that
graphed functions of two variables in order to test my data storage schemes.
This research is important to others because it’s trying to find a way to
optimize the processes involved in 3D graphics. Another purpose is to find
ways to reduce the presence of whitespace in a 3D graphics program. The
same expression tree classes were used, but the graphing calculator class was
modified so that it implemented the Z-buffer algorithm. This area of research
is also important to others because it’s trying to find a way to optimize the
performance of the graphing techniques.

2 Background

Previous projects concerning this area of research include The Investigation
of Graphics in the Processing Language by J. Trent and CityBlock Project:
Multi-perspective Panoramas of City Blocks by M. Levoy. The 3D graphics
projects used rotation matrices, such as the 2D matrix [[cos(a) -sin(a)] [sin(a)
cos(a)]], to rotate graphs by an angle a (Levoy, Trent). However, they didn’t
seem to indicate how these matrices were stored. Other sources specific to
Java programming suggested the use of the format xB instead of Ax for
linear transformations, where both the column vector and the matrix get
transposed. The purpose of this was to take advantage of the way arrays
are stored in Java and to reduce errors (Ameraal). Possible state-of-the art
programs could be MatLab or other computer algebra systems or even the
3D-graphing feature of the TI-89.

One algorithm that was used in my program was infix traversal. My
binary expression trees consisted of a String and two other binary expression
trees. The String represented the operation that was being stored, while the
subtrees were the two operands. In my infix evaluation, the two subtrees
would be evaluated, and the results would be used as inputs to the specified
operation. In order to create the binary expression trees, I split up my Strings

3



in the reverse of my order of operations. They would be split up first based
on addition and subtraction, then by multiplication and division, then by
exponentiation, etc. That way, my order of operations would be preserved
when I evaluated the trees.

Another algorithm that was used in my program was the Z-buffer al-
gorithm. My program started with a set of discrete points, which would
be rotated by certain viewing angles. After the rotation is performed, each
point would be mapped to a certain pixel on the screen and then drawn. A
Z-buffer algorithm uses an array to keep track of each pixel on the screen.
Whenever a point gets mapped to a certain pixel, the algorithm checks the
array to see whether the point is closer to the viewer than the point that
currently occupies that pixel. In my program, the distance from the viewer
is determined by the y-coordinate of the point. If the new point is closer to
the old point, the old point is replaced in the array and does not get drawn
(Ameraal).

3 Development

3.1 Development Plan

My project uses the staged delivery development process, since I have a
different plan for each quarter. Every quarter, I have a specific version in
mind that has specific functionality. For the first quarter, I planned to just
implement a regular calculator module to make sure my infix evaluation algo-
rithms were functioning properly. These recursive algorithms would be used
again for my graphing calculator, since the equations would be read in and
stored in binary expression trees before graphing. During second quarter, I
planned to implement a matrix editing module since the 3D graphics com-
ponent required the use of matrices. For third quarter, I planned to actually
implement my graphing module so that I could test the various data struc-
tures. For the fourth quarter, I planned to test the data storage schemes,
modify my graphing calculator so that it uses the Z-buffer algorithm, and
find ways to eliminate whtiespace.

4



3.2 Testing Requirements

The implementation of the binary expression trees was pretty straightfor-
ward, so my first criteria for determining success involved the actual parsing
of Strings. I had to make sure that the listeners associated with the ”Enter”
button followed the correct order of operations and created binary expression
trees based on that order. To test the accuracy of my program, I used the
TI-83 evaluation algorithm as a standard. My second criteria was to make
sure the matrix editing panel and the matrix operations panel interacted
correctly so that matrices could be inputted without losing data.

For the graphing panel, I had to see whether the program could plot points
according to a right-handed set of coordinate axes and apply the relevant
matrix operations to rotate the graphs. I also had to measure the amount
of lag that resulted for each data storage scheme and see which one resulted
in the shortest waiting time. After implementing the Z-buffer algorithm, my
final test was to determine the amount of white spaces in the graphs.

3.3 Research Theory and Design Criteria

To find out the quickest way to store data, I used four different data struc-
tures when graphing my functions. The first data storage scheme that I used
involved a matrix expression tree. The tree was used to store the matrix
expressions needed to rotate my graphs, and it was evaluated whenever I
needed to plot points. The original, unrotated points were recalculated each
time the viewing window updated itself to take into account any changes in
screen size. The original data points were to be stored as column vectors.
My second data storage scheme was similar to the first one. However, the
points were be stored as row vectors instead of column vectors. My third
data storage scheme involved calculating the original data points only once
at the beginning of the program and using row vectors. My final data stor-
age scheme involved hard-coding the rotation formulas and calculating the
original points only once.

In order to gather my data, I modified one of the listeners for my graph-
ing calculator so that whenever you pressed one of the ”Rotate” buttons, it
changes the viewing angles and re-rotates the graph 10,000,000 times. Each
time, it executes the method System.nanoTime() before and after repainting
the graphing window, since it is in the repaint() process that it performs
the viewing transformations. Then, it prints out the elapsed time to a text

5



file. After gathering data for each different data storage scheme, I ran an-
other program to analyze this data. This program ignored the first million
data points for each scheme, since the programs tended to run slower at the
beginning of the trial period and then reached a ”steady state” after multi-
ple iterations. The analyzer program calculated the average runtime for the
remaining 9,000,000 iterations and printed out the results. I decided to go
with 9,000,000 iterations to ”dilute” the effects of outliers on the averages.
No other programs were running except for the NetBeans IDE v. 4.1. The
computer on which I ran my program had 512 MB of RAM and a 1.5 GHz
processor. The version of Java used was J2SE 1.5.

However, after I realized that my program was leaving data on the RAM
each iteration, and was therefore suffering from memory leaks, I had to mod-
ify my program. Each iteration, I had to do a garbage collect to clean up
the RAM. Because my program wasn’t constantly increasing its RAM allo-
cation, it didn’t run as fast, so the number of iterations had to be reduced
from 10,000,000 to 10,000.

To gather data concerning the Z-buffering schemes, I took a screenshot of
each running version of my program and used GIMP to crop out the region
from (0, 24) to (501, 525). The screenshots that I took were of the func-

tion z =
1

x2 + y2
graphed on the domain xε[−10, 10], yε[−10, 10], zε[−10, 10]

viewed from the angles θ = −.1, φ = π/4. I then used GIMP to convert
the screenshots to PPM format. Since the graphs were being drawn in
a monochromatic red, the number of white spaces was determined by the
number of pixels with nonzero values of blue and green pixels.

3.4 Runtime Process

During the runtime of my third quarter version, the user starts out with this
window:

6



Here, the user can input equations to graph and change the window bounds.
After pressing the ”Begin Graphing” button, a graph of the function is dis-
played. The ”Rotate” buttons allow the user to rotate the graph in the
specified directions.

4 Results, Conclusion, and Discussion

The purpose of this research project is to find a way to maximize the speed
of a 3D graphics program. To change the runtime speeds, I used different
methods to store the matrices used for graphics-related operations. This
research is important to others because it’s trying to find a way to optimize

7



the processes involved in 3D graphics. I consider my project to be a success
since I obtained enough to compare the performances of each data structure.

So far, I have managed to create a working binary expression trees class
that can handle logarithmic functions, exponential functions, trigonometric
operations, inverse trigonometric operations, and regular arithmetic opera-
tions. The trees for non-arithmetic operations only have one subtree since
they only take one argument. I created a class that parsed input Strings and
broke them up based on an order of operations that I determined. My ma-
trix editor also uses binary expression trees, except this time, the arguments
are matriceds instead of doubles. It can handle addition, subtraction, mul-
tiplication, and other operations such as matrix inversion and Gauss-Jordan
elimination. I also have a working graphing calculator that can store func-
tions in binary expression trees, apply the rotations that are necessary to
view the object, and display the data points on the screen.

The slowest version of my program involved a matrix expression tree
where all the points were recalculated with each rotation and were stored as
column vectors (Scheme 1). Each iteration, this scheme took 2685 nanosec-
onds to rotate a single graph. Storing the points as row vectors instead of
column vectors made a significant difference, since this scheme only took
2513 nanoseconds (Scheme 2). Calculating the points once at the beginning
of the program seemed to make no appreciable difference in speed, since the
runtime per iteration was 2592 nanoseconds (Scheme 3). The change that
seemed to make the biggest difference was to get rid of the matrix trees com-
pletely and hard-code the rotation formulas, since this scheme only took 2440
nanoseconds per iteration (Scheme 4). I will not include the data points that
were collected in this paper, since there are 40 million of them and they took
up a total of 240 megabytes.

However, there are anomalies in the data. Scheme 3 took longer than
Scheme 2, even though it performed fewer flops per iteration. A closer anal-
ysis of the data I collected revealed that the runtimes did not stay constant.
At the beginning, each program took over 10,000 nanoseconds per iteration
to run. After a few iterations, the runtime length would spike, and then it
would decrease to 9,000 nanoseconds. After running at 9,000 nanoseconds,
the runtime length would spike again and then plateau at an even lower
value. This process continued until the programs reached a steady-state. By
iteration number 20,000, the runtimes would alternate between 2235 ns and
2514 ns. An calculation of the mode data point confirmed this operation:
Schemes 1 and 2 had modes of 2514 ns, while Schemes 3 and 4 had modes of

8



2235 ns.

Table 1: Mean and mode runtimes, without the garbage collect

Link Scheme 1 Scheme 2
Scheme 3 Scheme 4

Mean Runtime (ns) 2685 2513 2592 2440
Mode Runtime (ns) 2514 2514 2235 2235

One possible explanation for the spike-and-plateau pattern involves the
use of memory. Every time I ran the repaint() method, my program left
data in the computer’s memory. As the Java Virtual Machine started to run
out of RAM, it would ”ask” the system for more, which explains the spikes.
This increase in RAM allocation allows the program to run faster, which
explains the plateaus. One solution to this problem would be to run the
garbage collector (System.gc()) every iteration so that the amount of RAM
usage stays constant.

After rewriting my program so that it did a garbage collect every iteration,
I redid the data collection. Because memory leaks were no longer a problem,
the data didn’t show a spike-and-plateau pattern. However, the programs
also ran much slower because the RAM allocation wasn’t constantly being
increased. Because of the decrease in speed, I had to reduce the number of
iterations from 10,000,000 to 10,000. The data indicated that optimiation
was having the exact opposite effect that it was intended to have: Scheme 1
ran the fastest, while Scheme 4 was the slowest. The average runtimes were
42,558 ns for Scheme 1; 45,343 ns for Scheme 2; 44,679 ns for Scheme 3; and
50,457 ns for Scheme 4. One would think that these results were caused by
outliers, which now have more influence on the averages because there are
fewer data points. An analysis of the modes disproves this hypothesis. The
median runtimes were 33,803 ns for Scheme 1; 36,876 ns for Scheme 2; and
37,435 ns for Schemes 3 and 4.

Another area of research for this project is to test the effectiveness of
different drawing schemes for a Z-buffer algorithm. Scheme 1 just plotted the
points that were not being obscured by other points. Scheme 2 drew triangles
between these points, and Scheme 3 combined Schemes 1 and 2. Scheme 4
implemented Scheme 1 for regions of the function where the gradient was
shallow, and Scheme 2 for steeper gradients.

9



An analysis of the screenshots revealed that for Scheme 1, 72.901 percent
of the pixels contained nonzero values for blue and green. Although this can
include regions of the screenshot that are ”outside of” the function, this also
includes white spaces that show up in the graph. Most of the whitespace in
Scheme 1 occurred on the asymptote of the function, where the magnitude
of the gradient was greater:

For Scheme 2, 88.699 percent of the pixels were whitespace. Most of
the white spaces occurred in regions of the function where the gradient was
shallower. One possible explanation is that in those regions, it is more likely
for a point to be obscured by another point, which makes it less likely that
a triangle will be drawn:

Table 2: Mean and mode runtimes, with garbage collect
Link Scheme 1 Scheme 2

Scheme 3 Scheme 4
Mean Runtime (ns) 42,558 45,343 44,679 50,457
Mode Runtime (ns) 33,803 36,876 37,435 37,435

10



For Scheme 3, 65.815 percent of the screen was covered in whitespace.
Since it combined Schemes 1 and 2, it worked well for most of the function
(both steep and shallow regions). However, a few tears occurred where the
magnitude of the gradient was approximately 1:

In order to improve runtime efficiency, I created Scheme 4, which uses
Scheme 1 for shallow gradients and Scheme 2 for steep gradients. Because

11



it does not run both schemes over the entire viewing window, it should run
faster than Scheme 3, although I did not compare their runtime speeds.
However, the measures that I included to save time did not compromise per-
foramnce, since the amount of whitespace only increased to 66.948 percent:

Table 3: Percent whitespace
Link Scheme A Scheme B Scheme C Scheme D

Percent 72.901 88.699 65.815 66.948

The conclusion that I can draw is that the type of data structure being
used has a significant impact on the runtime efficiancy of the program. Al-
though the use of a binary search tree allows the user to write neater code, it
results in considerable lag when the program runs. The best way to store a
matrix is to hard-code the formulas. Areas for future research would involve
collecting more data to see if the unexpected results of optimization can be
repeated. Another conclusion that I can draw is that the magnitude of the
gradient determines the success or failure of different graphing schemes. Ar-
eas for future research can include testing other schemes and collecting more
data.

12



References

[1] M. Levoy, “CityBlock Project: Multi-perspective Panoramas of City
Blocks,” 2006.

[2] J. Trent, “The Investigation of Graphics in the Processing Language,”
2006.

[3] L. Ameraal, Computer Graphics for Java Programmers, 1998.

13


