
3D Graphics Module
By Ramesh Srigiriraju

Computer Systems Research Lab 2006-07

Abstract

The purpose of this research project is
to test different data storage methods for
a 3D graphics program. The testing was
done using a graphing calculator program
that allowed the user to rotate the graphs
while viewing them. The program will be
included in the student Intranet as a module
and thus includes elements of modular
design. The program used four different
data storage schemes: one used matrix
expression trees and column vectors,
another stored data as row vectors, and
another used no matrix expression trees at
all. Another test case used matrix
expression trees, but the data points were
all calculated at the beginning instead of
being recalculated each time, like in the
no-tree test case.

Background & Introduction

Previous projects concerning this area of research
include The Investigation of Graphics in the
Processing Language by C. Fralick, the City Block
Project by M. Levoy, and TJForge
Iodine for the modular programming component.
The 3D graphics projects seemed to use rotation
matrices to rotate graphs by an angle a. Iodine
used HTML to program in the modules. Possible
state-of-the art programs could be MatLab or other
computer algebra systems or even the
3D-graphing feature of the TI-89.

Procedures

My lifecycle model the Staged Delivery, where every
few weeks I add functionality to an older version of
my program with a specific goal in mind. These
versions were created to test my data storage
schemes for functionality. In the case of my
graphing calculator module, they were also used
to test my schemes for speed and efficiency. To
test my programs, I had my graphing calculator
rotate the graphs 10 million times, and the first
million test cases were ignored. The exclusion was
done because the programs had a tendency to get
faster until they reached a “steady state”, and I
used 9 million data points to reduce the effects of
outliers.

Results

The first data storage scheme (matrix
expression trees, data stored as column
vectors, data recalculated each time) was by
far the slowest, taking 2685 ns. The last
scheme (hard-coded formulas) was the fastest,
taking only 2440 ns to run. Storing data as row
vectors (scheme 2) improved performance,
since this only took 2513 ns. However,
calculating the data only once at the beginning
actually took more time because of the use of
temporary variables (scheme 3, 2592 ns).

Average Runtimes (ns)
Scheme 1: 2685
Scheme 2: 2513
Scheme 3: 2592
Scheme 4: 2440

