Project Description

Student: Ramesh Srigiriraju

Firm: Computer Systems Research, Pd. 5

Mentor: Randolph Latimer

Title: Development of a 3D Graphics Module

Background

The purpose of this research project is to find ways to maximize the speed of a 3D graphics program. Previous projects concerning this area of research include The Investigation of Graphics in the Processing Language by J. Trent and CityBlock Project: Multi-perspective Panoramas of City Blocks by M. Levoy, The sources that were specific to Java programming suggested the use of the format xB instead of Ax for linear transformations, where both the column vector and the matrix get transposed. The purpose of this was to take advantage of the way arrays are stored in Java and to reduce errors. Another area of focus of this project is to find ways to minimize whitespace in a 3D graphics program that uses the Z-Buffer algorithm.

Desciption

To investigate the runtime speeds, I used different methods to store the matrices used for graphics-related operations (such as rotations, translations, etc.). The first data storage scheme that I used involved a matrix expression tree. This data structure is similar to a binary expression tree, but it stores matrices instead of numbers. The tree would be used to store the matrix expressions needed to rotate my graphs, and it would be evaluated whenever I needed to plot points. The original, unrotated points would be recalculated each time the viewing window updates itself to take into account any changes in screen size. The original data points would also be stored as column vectors.

My second data storage scheme was similar to the first one. However, the points would be stored as row vectors instead of column vectors because of the way Java stores arrays. My third data storage scheme involved calculating the original data points only once at the beginning of the program. Other than that, this storage scheme was similar to my second one. My final data storage scheme involved hard-coding the rotation formulas instead of using matrices. The original data would only be calculated once at the beginning.

When the data was collected, the results were similar to my expectations, with Scheme 1 running the slowest and Scheme 4 running the fastest. However, my program suffered from memory leaks because it was leaving data on the RAM each time a rotation was performed. Because each program was periodically increasing its RAM allocation, it ended up getting faster and faster until it reached a steady-state of 2235 ns. To avoid the memory leaks, I included a garbage collector to clean up the ram. Since the RAM allocation wasn't being increased, my programs ended up running slower, and the results were the exact opposite of what I expected. Scheme 4 was the slowest, while Scheme 1 was the fastest.

As part of the whitespace elimination program, I also used four different schemes. One scheme simply plotted points after running the Z-Buffer algorithm on them. This scheme didn't work where the gradient of the function being graphed was steep. A second scheme drew triangles between the points, and it worked where the gradient was steep. However, it didn't work well for shallower gradients. A third scheme, which combined the first two, was more successful at eliminating the whitespace. Scheme 4, which drew triangles for steep gradients and plotted points everywhere else, was almost as good as the third scheme at eliminating whitespace.

