
Decentralized Distributed Processing

Michael Tao
Thomas Jefferson High School for Science and Technology

Alexandria, Virginia

June 13, 2007

1



Abstract

With the large quantities of data being collected every day, a sin-
gle computer’s CPU’s computational ability to analyze the data and
to utilize meaning behind the data is less than satisfactory. In order
to mine through the data within certain time constraints, a collection
of computers is needed. The purpose of this project is to produce
a medium for distributing the load of tasks to networked peers with
varying computing power in an efficient manner. This will distribute
the work load from one computer to other computers within a network
of peer computers by sending portions of the data and the proper an-
alytical tools to all of the specified peers while also computing various
peer’s tasks. Peers can be running on multiple computer platforms
such as Windows and Linux.

Keywords: High performance, Data analysis, decentralized, dis-
tributed processing

1 Introduction and Background

Though distributed servers and clusters have existed for a while, there is a
lack of sharing, most distributing acts rely on a single task giver, and the
peers being enslaved to the server, with little / no reciprocation. As the
quantity of data and complexity of analysis from individual groups becomes
greater, the efficiency current distributed processing units will certainly be-
come less than satisfactory.

Though distributed servers and clusters have existed for a while, there is a
lack of sharing, most distributing acts rely on a single taskgiver, and the peers
being enslaved to the server, with little / no reciprocation. As the quantity
of data and complexity of analysis from individual groups becomes greater,
the efficiency current distributed processing units will certainly become less
than satisfactory. Some projects such as Boinc have been created to share
the resources of many nodes on a certain set of registered tasks, but the
individuals controlling those nodes are unable to input any tasks that they
themselves want accomplished into this network. Currently nearly all of the
distributed analysis systems are designed only for one specific application in
order to specialize and do them efficiently. In the larger picture, of all of the
data analyses needed to be done in the world, only a select few are being

2



done efficiently, and the medium for those which are being done with some
efficiency are unusable by all of the processing base.

Each particular task has it’s own unique characteristics which make gen-
eral optimizations nearly impossible. In order to enable a more optimal
system the best idea would be to allow the ones who understand the applica-
tions flowing through a distributed system to decide how to distribute tasks
themselves. Combined with the ideal of removing a centralized source for
distribution, each task’s means for solution gains a nearly organic existance,
splitting into a network of nodes through means which are nearly unpre-
dictable, and yet still able to accomplish the task itself and in an optimal
time period as well.

2 Development

Part of the point of this project was to give me a means to learn more about
threads and networking in Java while also working on a topic that interested
me. The first iterations involved learning the nature of threads of threads
and networking within java through various ”hello world” applications which
eventually were expanded into usable methods within the project, while the
second large iteration involved making threads which are spanned in an or-
ganization similar to what I will probably use in the final iteration for this
project.

The next few iterations involved it is able to recognize tasks being handed
to it and will then start doing each task one at a time. Each instance of the
application would initialize each task-doing client upon necessity and could
initialize multiple clients to do the task as necessary, decided by a heuristic
located within the file the task is contained in. The distribution process was
orriginally designed for only one level of distribution, but later on it was
decided that having a each node redistribute until the heurustic fell below a
certain level would be a more efficient process.

In the final iteration, both previous portions were combined to create an
application which can recieve the input of a task to be done, check on how it
is to be distributed based off of how the task itself describes, distribute itself
over the group of peers available, and wait for each of the peers it distributes
as the many times as the task’s distribution heuristic decides appropriate.
Eventually all of hte nodes in the tree that the distribution process creates
eventually to return data to their parent nodes, which further.

3



3 Results and Discussion

The application is for the most part completed. There are is a lack of docu-
mentation for the development of task applications, but there are examples
from which users can use as examples for development and the end product
is usable. The core of the distribution system’s architecture was changed
around a few times, but in the end it was decided to allow for peers to dis-
tribute between all available peers at their liesure. That means that a peer
can be sent it’s own task several times, if it is not busy.

There are large requirements for users of the application to know what
they want to do and be able to use their own means possible. That is
where this sort of highly free decentralized application comes into competi-
tion with the other centralized applications. Those applications either are
completely optimized for their own application, and therefore become im-
mobile to other people’s possible usages or use generic means for processing
tasks, and therefore waste much more time on overhead necessary. This de-
centralized method allows for users to have great optimizations, but at the
cost of the requirement that the users of this application write out how to
implement the distribution process, which isn’t the easiest thing to do. The
easiest cure to this ailment, which was implemented in this project, was to
have generic default distribution process.

4



References

[1] M. Wang, T. Madhyastha, N.H. Chan, S. Papadimitriou, C. Falout-
sos, “Data Mining Meets Performance Evaluation: Fast Algorithms for
Modeling Bursty Traffic”

[2] Khalil Amiri, David Petrou, Gred Ganger, and Garth Gibson, “Easing
the Management of Data-parallel Systems via Adaptation”, Procedings
of 9th ACM SIGOPS European Workshops & CMU-CS-99-140, Septem-
ber 2000.

[3] Khalil Amiri, David Petrou, Gred Ganger, and Garth Gibson, “Dy-
namic Function Placement for Data-Intensive Cluster Computing”, Su-
percedes Carnegie Mellon University School of Computer Technical Re-
port & CMU-CS-99-140, June 2000.

[4] Michael Mesnier, Eno Thereska, Daniel Ellard, Gregory R. Ganger,
Margo Seltzer, “File Classification in Self-* Storage Systems”, Su-
percedes Carnegie Mellon Univerity Parallel Data Lab Technical Report,
January 2004.

[5] Joao Pedro Sousa, David Garlan, “Aura: an Architectural Framework
for User Mobility in Ubiquitous Computing Environments”, Procedings
of the 3rd Working IEEE/IFIP Conference on Software Architecture,
August 2002.

5


